High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations

Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-11, Vol.59 (48), p.21613-21619
Hauptverfasser: Ma, Ying, Ren, Yujing, Zhou, Yanan, Liu, Wei, Baaziz, Walid, Ersen, Ovidiu, Pham‐Huu, Cuong, Greiner, Mark, Chu, Wei, Wang, Aiqin, Zhang, Tao, Liu, Yuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21619
container_issue 48
container_start_page 21613
container_title Angewandte Chemie International Edition
container_volume 59
creator Ma, Ying
Ren, Yujing
Zhou, Yanan
Liu, Wei
Baaziz, Walid
Ersen, Ovidiu
Pham‐Huu, Cuong
Greiner, Mark
Chu, Wei
Wang, Aiqin
Zhang, Tao
Liu, Yuefeng
description Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (>99 %) and gas‐phase hydrogenation of CO2 to CO (>98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms. A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.
doi_str_mv 10.1002/anie.202007707
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03409738v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434056014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</originalsourceid><addsrcrecordid>eNqF0c1qGzEQB3BRWmjq9tqzoJfmsO7oY6Xdo3HSOGDaQtKzkHdnbQXtKpXWCXvrI-QZ8ySRcUkgl570wW_EjP6EfGYwZwD8mx0czjlwAK1BvyEnrOSsEFqLt3kvhSh0VbL35ENKN9lXFagTsl257e7x78MZDsmNE7VDS693GHvr_USvRrvxSH_lg23dvqdXbth6zH4xhp4u7Wj9lMZEuxDpcod9SOixGd0d0tXUxrDFwY4uDOkjeddZn_DTv3VGfn8_v16uivXPi8vlYl00kjNd8FYAg061mkPTyE2DtVAbjhWvmOpaLK3kVlsJbaU6KHVtkStmpdCy1ppXYkZOj-_urDe30fU2TiZYZ1aLtTncgZBQa1HdsWy_Hu1tDH_2mEbTu9RgnnXAsE-Gy2xLBfnvZuTLK3oT9nHIk2SlQJdKK57V_KiaGFKK2D13wMAcMjKHjMxzRrmgPhbcO4_Tf7RZ_Lg8f6l9AsNillg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460756762</pqid></control><display><type>article</type><title>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</title><source>Wiley Online Library All Journals</source><creator>Ma, Ying ; Ren, Yujing ; Zhou, Yanan ; Liu, Wei ; Baaziz, Walid ; Ersen, Ovidiu ; Pham‐Huu, Cuong ; Greiner, Mark ; Chu, Wei ; Wang, Aiqin ; Zhang, Tao ; Liu, Yuefeng</creator><creatorcontrib>Ma, Ying ; Ren, Yujing ; Zhou, Yanan ; Liu, Wei ; Baaziz, Walid ; Ersen, Ovidiu ; Pham‐Huu, Cuong ; Greiner, Mark ; Chu, Wei ; Wang, Aiqin ; Zhang, Tao ; Liu, Yuefeng</creatorcontrib><description>Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (&gt;99 %) and gas‐phase hydrogenation of CO2 to CO (&gt;98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms. A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202007707</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atmosphere ; Carbon dioxide ; Carburization (corrosion) ; Carburizing ; Catalysts ; Chemical Sciences ; chemoselective hydrogenation ; Crystals ; Density ; Hydrogenation ; Lattice vacancies ; metal–support interactions ; or physical chemistry ; Palladium ; PD-1 protein ; Selectivity ; Single atom catalysts ; single-atom catalysis ; Theoretical and ; Thermal stability</subject><ispartof>Angewandte Chemie International Edition, 2020-11, Vol.59 (48), p.21613-21619</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</citedby><cites>FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</cites><orcidid>0000-0001-9823-3811 ; 0000-0003-0480-2097 ; 0000-0003-1048-4443 ; 0000-0003-3271-019X ; 0000-0002-3749-6105 ; 0000-0002-1553-0915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202007707$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202007707$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03409738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Ren, Yujing</creatorcontrib><creatorcontrib>Zhou, Yanan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Baaziz, Walid</creatorcontrib><creatorcontrib>Ersen, Ovidiu</creatorcontrib><creatorcontrib>Pham‐Huu, Cuong</creatorcontrib><creatorcontrib>Greiner, Mark</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Liu, Yuefeng</creatorcontrib><title>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</title><title>Angewandte Chemie International Edition</title><description>Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (&gt;99 %) and gas‐phase hydrogenation of CO2 to CO (&gt;98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms. A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.</description><subject>Atmosphere</subject><subject>Carbon dioxide</subject><subject>Carburization (corrosion)</subject><subject>Carburizing</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>chemoselective hydrogenation</subject><subject>Crystals</subject><subject>Density</subject><subject>Hydrogenation</subject><subject>Lattice vacancies</subject><subject>metal–support interactions</subject><subject>or physical chemistry</subject><subject>Palladium</subject><subject>PD-1 protein</subject><subject>Selectivity</subject><subject>Single atom catalysts</subject><subject>single-atom catalysis</subject><subject>Theoretical and</subject><subject>Thermal stability</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0c1qGzEQB3BRWmjq9tqzoJfmsO7oY6Xdo3HSOGDaQtKzkHdnbQXtKpXWCXvrI-QZ8ySRcUkgl570wW_EjP6EfGYwZwD8mx0czjlwAK1BvyEnrOSsEFqLt3kvhSh0VbL35ENKN9lXFagTsl257e7x78MZDsmNE7VDS693GHvr_USvRrvxSH_lg23dvqdXbth6zH4xhp4u7Wj9lMZEuxDpcod9SOixGd0d0tXUxrDFwY4uDOkjeddZn_DTv3VGfn8_v16uivXPi8vlYl00kjNd8FYAg061mkPTyE2DtVAbjhWvmOpaLK3kVlsJbaU6KHVtkStmpdCy1ppXYkZOj-_urDe30fU2TiZYZ1aLtTncgZBQa1HdsWy_Hu1tDH_2mEbTu9RgnnXAsE-Gy2xLBfnvZuTLK3oT9nHIk2SlQJdKK57V_KiaGFKK2D13wMAcMjKHjMxzRrmgPhbcO4_Tf7RZ_Lg8f6l9AsNillg</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Ma, Ying</creator><creator>Ren, Yujing</creator><creator>Zhou, Yanan</creator><creator>Liu, Wei</creator><creator>Baaziz, Walid</creator><creator>Ersen, Ovidiu</creator><creator>Pham‐Huu, Cuong</creator><creator>Greiner, Mark</creator><creator>Chu, Wei</creator><creator>Wang, Aiqin</creator><creator>Zhang, Tao</creator><creator>Liu, Yuefeng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9823-3811</orcidid><orcidid>https://orcid.org/0000-0003-0480-2097</orcidid><orcidid>https://orcid.org/0000-0003-1048-4443</orcidid><orcidid>https://orcid.org/0000-0003-3271-019X</orcidid><orcidid>https://orcid.org/0000-0002-3749-6105</orcidid><orcidid>https://orcid.org/0000-0002-1553-0915</orcidid></search><sort><creationdate>20201123</creationdate><title>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</title><author>Ma, Ying ; Ren, Yujing ; Zhou, Yanan ; Liu, Wei ; Baaziz, Walid ; Ersen, Ovidiu ; Pham‐Huu, Cuong ; Greiner, Mark ; Chu, Wei ; Wang, Aiqin ; Zhang, Tao ; Liu, Yuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmosphere</topic><topic>Carbon dioxide</topic><topic>Carburization (corrosion)</topic><topic>Carburizing</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>chemoselective hydrogenation</topic><topic>Crystals</topic><topic>Density</topic><topic>Hydrogenation</topic><topic>Lattice vacancies</topic><topic>metal–support interactions</topic><topic>or physical chemistry</topic><topic>Palladium</topic><topic>PD-1 protein</topic><topic>Selectivity</topic><topic>Single atom catalysts</topic><topic>single-atom catalysis</topic><topic>Theoretical and</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Ren, Yujing</creatorcontrib><creatorcontrib>Zhou, Yanan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Baaziz, Walid</creatorcontrib><creatorcontrib>Ersen, Ovidiu</creatorcontrib><creatorcontrib>Pham‐Huu, Cuong</creatorcontrib><creatorcontrib>Greiner, Mark</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Liu, Yuefeng</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Ying</au><au>Ren, Yujing</au><au>Zhou, Yanan</au><au>Liu, Wei</au><au>Baaziz, Walid</au><au>Ersen, Ovidiu</au><au>Pham‐Huu, Cuong</au><au>Greiner, Mark</au><au>Chu, Wei</au><au>Wang, Aiqin</au><au>Zhang, Tao</au><au>Liu, Yuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>59</volume><issue>48</issue><spage>21613</spage><epage>21619</epage><pages>21613-21619</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (&gt;99 %) and gas‐phase hydrogenation of CO2 to CO (&gt;98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms. A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202007707</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9823-3811</orcidid><orcidid>https://orcid.org/0000-0003-0480-2097</orcidid><orcidid>https://orcid.org/0000-0003-1048-4443</orcidid><orcidid>https://orcid.org/0000-0003-3271-019X</orcidid><orcidid>https://orcid.org/0000-0002-3749-6105</orcidid><orcidid>https://orcid.org/0000-0002-1553-0915</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-11, Vol.59 (48), p.21613-21619
issn 1433-7851
1521-3773
language eng
recordid cdi_hal_primary_oai_HAL_hal_03409738v1
source Wiley Online Library All Journals
subjects Atmosphere
Carbon dioxide
Carburization (corrosion)
Carburizing
Catalysts
Chemical Sciences
chemoselective hydrogenation
Crystals
Density
Hydrogenation
Lattice vacancies
metal–support interactions
or physical chemistry
Palladium
PD-1 protein
Selectivity
Single atom catalysts
single-atom catalysis
Theoretical and
Thermal stability
title High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Density%20and%20Thermally%20Stable%20Palladium%20Single%E2%80%90Atom%20Catalysts%20for%20Chemoselective%20Hydrogenations&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ma,%20Ying&rft.date=2020-11-23&rft.volume=59&rft.issue=48&rft.spage=21613&rft.epage=21619&rft.pages=21613-21619&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202007707&rft_dat=%3Cproquest_hal_p%3E2434056014%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460756762&rft_id=info:pmid/&rfr_iscdi=true