High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations
Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high s...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-11, Vol.59 (48), p.21613-21619 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21619 |
---|---|
container_issue | 48 |
container_start_page | 21613 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Ma, Ying Ren, Yujing Zhou, Yanan Liu, Wei Baaziz, Walid Ersen, Ovidiu Pham‐Huu, Cuong Greiner, Mark Chu, Wei Wang, Aiqin Zhang, Tao Liu, Yuefeng |
description | Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (>99 %) and gas‐phase hydrogenation of CO2 to CO (>98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.
A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts. |
doi_str_mv | 10.1002/anie.202007707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03409738v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434056014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</originalsourceid><addsrcrecordid>eNqF0c1qGzEQB3BRWmjq9tqzoJfmsO7oY6Xdo3HSOGDaQtKzkHdnbQXtKpXWCXvrI-QZ8ySRcUkgl570wW_EjP6EfGYwZwD8mx0czjlwAK1BvyEnrOSsEFqLt3kvhSh0VbL35ENKN9lXFagTsl257e7x78MZDsmNE7VDS693GHvr_USvRrvxSH_lg23dvqdXbth6zH4xhp4u7Wj9lMZEuxDpcod9SOixGd0d0tXUxrDFwY4uDOkjeddZn_DTv3VGfn8_v16uivXPi8vlYl00kjNd8FYAg061mkPTyE2DtVAbjhWvmOpaLK3kVlsJbaU6KHVtkStmpdCy1ppXYkZOj-_urDe30fU2TiZYZ1aLtTncgZBQa1HdsWy_Hu1tDH_2mEbTu9RgnnXAsE-Gy2xLBfnvZuTLK3oT9nHIk2SlQJdKK57V_KiaGFKK2D13wMAcMjKHjMxzRrmgPhbcO4_Tf7RZ_Lg8f6l9AsNillg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460756762</pqid></control><display><type>article</type><title>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</title><source>Wiley Online Library All Journals</source><creator>Ma, Ying ; Ren, Yujing ; Zhou, Yanan ; Liu, Wei ; Baaziz, Walid ; Ersen, Ovidiu ; Pham‐Huu, Cuong ; Greiner, Mark ; Chu, Wei ; Wang, Aiqin ; Zhang, Tao ; Liu, Yuefeng</creator><creatorcontrib>Ma, Ying ; Ren, Yujing ; Zhou, Yanan ; Liu, Wei ; Baaziz, Walid ; Ersen, Ovidiu ; Pham‐Huu, Cuong ; Greiner, Mark ; Chu, Wei ; Wang, Aiqin ; Zhang, Tao ; Liu, Yuefeng</creatorcontrib><description>Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (>99 %) and gas‐phase hydrogenation of CO2 to CO (>98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.
A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202007707</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atmosphere ; Carbon dioxide ; Carburization (corrosion) ; Carburizing ; Catalysts ; Chemical Sciences ; chemoselective hydrogenation ; Crystals ; Density ; Hydrogenation ; Lattice vacancies ; metal–support interactions ; or physical chemistry ; Palladium ; PD-1 protein ; Selectivity ; Single atom catalysts ; single-atom catalysis ; Theoretical and ; Thermal stability</subject><ispartof>Angewandte Chemie International Edition, 2020-11, Vol.59 (48), p.21613-21619</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</citedby><cites>FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</cites><orcidid>0000-0001-9823-3811 ; 0000-0003-0480-2097 ; 0000-0003-1048-4443 ; 0000-0003-3271-019X ; 0000-0002-3749-6105 ; 0000-0002-1553-0915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202007707$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202007707$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03409738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Ren, Yujing</creatorcontrib><creatorcontrib>Zhou, Yanan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Baaziz, Walid</creatorcontrib><creatorcontrib>Ersen, Ovidiu</creatorcontrib><creatorcontrib>Pham‐Huu, Cuong</creatorcontrib><creatorcontrib>Greiner, Mark</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Liu, Yuefeng</creatorcontrib><title>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</title><title>Angewandte Chemie International Edition</title><description>Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (>99 %) and gas‐phase hydrogenation of CO2 to CO (>98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.
A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.</description><subject>Atmosphere</subject><subject>Carbon dioxide</subject><subject>Carburization (corrosion)</subject><subject>Carburizing</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>chemoselective hydrogenation</subject><subject>Crystals</subject><subject>Density</subject><subject>Hydrogenation</subject><subject>Lattice vacancies</subject><subject>metal–support interactions</subject><subject>or physical chemistry</subject><subject>Palladium</subject><subject>PD-1 protein</subject><subject>Selectivity</subject><subject>Single atom catalysts</subject><subject>single-atom catalysis</subject><subject>Theoretical and</subject><subject>Thermal stability</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0c1qGzEQB3BRWmjq9tqzoJfmsO7oY6Xdo3HSOGDaQtKzkHdnbQXtKpXWCXvrI-QZ8ySRcUkgl570wW_EjP6EfGYwZwD8mx0czjlwAK1BvyEnrOSsEFqLt3kvhSh0VbL35ENKN9lXFagTsl257e7x78MZDsmNE7VDS693GHvr_USvRrvxSH_lg23dvqdXbth6zH4xhp4u7Wj9lMZEuxDpcod9SOixGd0d0tXUxrDFwY4uDOkjeddZn_DTv3VGfn8_v16uivXPi8vlYl00kjNd8FYAg061mkPTyE2DtVAbjhWvmOpaLK3kVlsJbaU6KHVtkStmpdCy1ppXYkZOj-_urDe30fU2TiZYZ1aLtTncgZBQa1HdsWy_Hu1tDH_2mEbTu9RgnnXAsE-Gy2xLBfnvZuTLK3oT9nHIk2SlQJdKK57V_KiaGFKK2D13wMAcMjKHjMxzRrmgPhbcO4_Tf7RZ_Lg8f6l9AsNillg</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Ma, Ying</creator><creator>Ren, Yujing</creator><creator>Zhou, Yanan</creator><creator>Liu, Wei</creator><creator>Baaziz, Walid</creator><creator>Ersen, Ovidiu</creator><creator>Pham‐Huu, Cuong</creator><creator>Greiner, Mark</creator><creator>Chu, Wei</creator><creator>Wang, Aiqin</creator><creator>Zhang, Tao</creator><creator>Liu, Yuefeng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9823-3811</orcidid><orcidid>https://orcid.org/0000-0003-0480-2097</orcidid><orcidid>https://orcid.org/0000-0003-1048-4443</orcidid><orcidid>https://orcid.org/0000-0003-3271-019X</orcidid><orcidid>https://orcid.org/0000-0002-3749-6105</orcidid><orcidid>https://orcid.org/0000-0002-1553-0915</orcidid></search><sort><creationdate>20201123</creationdate><title>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</title><author>Ma, Ying ; Ren, Yujing ; Zhou, Yanan ; Liu, Wei ; Baaziz, Walid ; Ersen, Ovidiu ; Pham‐Huu, Cuong ; Greiner, Mark ; Chu, Wei ; Wang, Aiqin ; Zhang, Tao ; Liu, Yuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-2d3010f6d720cc4bce936b2e82816fde5a42a7a40d86f0579ae261a4374977283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmosphere</topic><topic>Carbon dioxide</topic><topic>Carburization (corrosion)</topic><topic>Carburizing</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>chemoselective hydrogenation</topic><topic>Crystals</topic><topic>Density</topic><topic>Hydrogenation</topic><topic>Lattice vacancies</topic><topic>metal–support interactions</topic><topic>or physical chemistry</topic><topic>Palladium</topic><topic>PD-1 protein</topic><topic>Selectivity</topic><topic>Single atom catalysts</topic><topic>single-atom catalysis</topic><topic>Theoretical and</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Ren, Yujing</creatorcontrib><creatorcontrib>Zhou, Yanan</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Baaziz, Walid</creatorcontrib><creatorcontrib>Ersen, Ovidiu</creatorcontrib><creatorcontrib>Pham‐Huu, Cuong</creatorcontrib><creatorcontrib>Greiner, Mark</creatorcontrib><creatorcontrib>Chu, Wei</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Liu, Yuefeng</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Ying</au><au>Ren, Yujing</au><au>Zhou, Yanan</au><au>Liu, Wei</au><au>Baaziz, Walid</au><au>Ersen, Ovidiu</au><au>Pham‐Huu, Cuong</au><au>Greiner, Mark</au><au>Chu, Wei</au><au>Wang, Aiqin</au><au>Zhang, Tao</au><au>Liu, Yuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>59</volume><issue>48</issue><spage>21613</spage><epage>21619</epage><pages>21613-21619</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Single‐atom catalysts (SACs) have shown superior activity and/or selectivity for many energy‐ and environment‐related reactions, but their stability at high site density and under reducing atmosphere remains unresolved. Herein, we elucidate the intrinsic driving force of a Pd single atom with high site density (up to 5 wt %) under reducing atmosphere, and its unique catalytic performance for hydrogenation reactions. In situ experiments and calculations reveal that Pd atoms tend to migrate into the surface vacancy‐enriched MoC surface during the carburization process by transferring oxide crystals to carbide crystals, leading to the surface enrichment of atomic Pd instead of formation of particles. The Pd1/α‐MoC catalyst exhibits high activity and excellent selectivity for liquid‐phase hydrogenation of substituted nitroaromatics (>99 %) and gas‐phase hydrogenation of CO2 to CO (>98 %). The Pd1/α‐MoC catalyst could endure up to 400 °C without any observable aggregation of single atoms.
A Pd1/α‐MoC catalyst with high mass loading could endure harsh reducing/reacting atmosphere up to 400 °C without any observable aggregation of single atoms. A pathway is thus provided to decouple the hydrogenation activity and stability of single‐atom catalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202007707</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9823-3811</orcidid><orcidid>https://orcid.org/0000-0003-0480-2097</orcidid><orcidid>https://orcid.org/0000-0003-1048-4443</orcidid><orcidid>https://orcid.org/0000-0003-3271-019X</orcidid><orcidid>https://orcid.org/0000-0002-3749-6105</orcidid><orcidid>https://orcid.org/0000-0002-1553-0915</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-11, Vol.59 (48), p.21613-21619 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03409738v1 |
source | Wiley Online Library All Journals |
subjects | Atmosphere Carbon dioxide Carburization (corrosion) Carburizing Catalysts Chemical Sciences chemoselective hydrogenation Crystals Density Hydrogenation Lattice vacancies metal–support interactions or physical chemistry Palladium PD-1 protein Selectivity Single atom catalysts single-atom catalysis Theoretical and Thermal stability |
title | High‐Density and Thermally Stable Palladium Single‐Atom Catalysts for Chemoselective Hydrogenations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Density%20and%20Thermally%20Stable%20Palladium%20Single%E2%80%90Atom%20Catalysts%20for%20Chemoselective%20Hydrogenations&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Ma,%20Ying&rft.date=2020-11-23&rft.volume=59&rft.issue=48&rft.spage=21613&rft.epage=21619&rft.pages=21613-21619&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202007707&rft_dat=%3Cproquest_hal_p%3E2434056014%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460756762&rft_id=info:pmid/&rfr_iscdi=true |