Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation
ABSTRACT Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2011-05, Vol.25 (5), p.1618-1627 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1627 |
---|---|
container_issue | 5 |
container_start_page | 1618 |
container_title | The FASEB journal |
container_volume | 25 |
creator | Guillet, Virginie Gueguen, Naïg Cartoni, Romain Chevrollier, Arnaud Desquiret, Valérie Angebault, Claire Amati-Bonneau, Patrizia Procaccio, Vincent Bonneau, Dominique Martinou, Jean-Claude Reynier, Pascal |
description | ABSTRACT
Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org |
doi_str_mv | 10.1096/fj.10-173609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03408441v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864780815</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2409-e48374117c696f5871fdb86479ea62ba87f1a8f01e2c560a0bfae0e648cc19cb3</originalsourceid><addsrcrecordid>eNqFkU1v2zAMhoVhw5pmve086Dbs4I2UHVk6psWydgvQAmvPgixTjQJ_ZJbdIv9-StL1ugtJ8X1AUHwZ-4jwFUHLb36bcoZlLkG_YTNc5JBJJeEtm4HSIpMyV2fsPMYtACCgfM_OBAq1yLWase1l6Kmj4ZHG4HhNntzIbYy9C3akmj-HccPbX8v7O-42tuuo4f2OutA98tBxy9t-ipRinQRnh2F_UFI7jL2fYkIEb6fRjqHvPrB33jaRLl7ynD2svt9fXWfr2x83V8t1thEF6IwKlZcFYumkln6hSvR1pWRRarJSVFaVHq3ygCTcQoKFylsCkoVyDrWr8jn7cpq7sY3ZDaG1w970Npjr5docepAXoIoCnzCxn0_sbuj_TBRH04boqGlsR-lnRkuFEoUo_0seNlSg0vnn7NMLOVUt1a8r_Dt6AtQJeA4N7V91BHMw1PjtsTwaala_L8XqZ7Lt-Mz_AmXDkvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864780815</pqid></control><display><type>article</type><title>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Guillet, Virginie ; Gueguen, Naïg ; Cartoni, Romain ; Chevrollier, Arnaud ; Desquiret, Valérie ; Angebault, Claire ; Amati-Bonneau, Patrizia ; Procaccio, Vincent ; Bonneau, Dominique ; Martinou, Jean-Claude ; Reynier, Pascal</creator><creatorcontrib>Guillet, Virginie ; Gueguen, Naïg ; Cartoni, Romain ; Chevrollier, Arnaud ; Desquiret, Valérie ; Angebault, Claire ; Amati-Bonneau, Patrizia ; Procaccio, Vincent ; Bonneau, Dominique ; Martinou, Jean-Claude ; Reynier, Pascal</creatorcontrib><description>ABSTRACT
Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.10-173609</identifier><identifier>PMID: 21285398</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Blotting, Western ; Brain - metabolism ; Charcot-Marie-Tooth Disease - genetics ; Charcot-Marie-Tooth Disease - metabolism ; Charcot-Marie-Tooth Disease - pathology ; Charcot‐Marie‐Tooth type 2A ; Diazoxide - pharmacology ; F0F1‐ATP synthase ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Humans ; Immunoprecipitation ; KATP Channels - agonists ; KATP Channels - metabolism ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; potassium channel ; succinate dehydrogenase</subject><ispartof>The FASEB journal, 2011-05, Vol.25 (5), p.1618-1627</ispartof><rights>FASEB</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5135-6643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.10-173609$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.10-173609$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21285398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-03408441$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillet, Virginie</creatorcontrib><creatorcontrib>Gueguen, Naïg</creatorcontrib><creatorcontrib>Cartoni, Romain</creatorcontrib><creatorcontrib>Chevrollier, Arnaud</creatorcontrib><creatorcontrib>Desquiret, Valérie</creatorcontrib><creatorcontrib>Angebault, Claire</creatorcontrib><creatorcontrib>Amati-Bonneau, Patrizia</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Bonneau, Dominique</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Reynier, Pascal</creatorcontrib><title>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT
Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Brain - metabolism</subject><subject>Charcot-Marie-Tooth Disease - genetics</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Charcot-Marie-Tooth Disease - pathology</subject><subject>Charcot‐Marie‐Tooth type 2A</subject><subject>Diazoxide - pharmacology</subject><subject>F0F1‐ATP synthase</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>KATP Channels - agonists</subject><subject>KATP Channels - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>potassium channel</subject><subject>succinate dehydrogenase</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v2zAMhoVhw5pmve086Dbs4I2UHVk6psWydgvQAmvPgixTjQJ_ZJbdIv9-StL1ugtJ8X1AUHwZ-4jwFUHLb36bcoZlLkG_YTNc5JBJJeEtm4HSIpMyV2fsPMYtACCgfM_OBAq1yLWase1l6Kmj4ZHG4HhNntzIbYy9C3akmj-HccPbX8v7O-42tuuo4f2OutA98tBxy9t-ipRinQRnh2F_UFI7jL2fYkIEb6fRjqHvPrB33jaRLl7ynD2svt9fXWfr2x83V8t1thEF6IwKlZcFYumkln6hSvR1pWRRarJSVFaVHq3ygCTcQoKFylsCkoVyDrWr8jn7cpq7sY3ZDaG1w970Npjr5docepAXoIoCnzCxn0_sbuj_TBRH04boqGlsR-lnRkuFEoUo_0seNlSg0vnn7NMLOVUt1a8r_Dt6AtQJeA4N7V91BHMw1PjtsTwaala_L8XqZ7Lt-Mz_AmXDkvI</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Guillet, Virginie</creator><creator>Gueguen, Naïg</creator><creator>Cartoni, Romain</creator><creator>Chevrollier, Arnaud</creator><creator>Desquiret, Valérie</creator><creator>Angebault, Claire</creator><creator>Amati-Bonneau, Patrizia</creator><creator>Procaccio, Vincent</creator><creator>Bonneau, Dominique</creator><creator>Martinou, Jean-Claude</creator><creator>Reynier, Pascal</creator><general>Federation of American Societies for Experimental Biology</general><general>Federation of American Society of Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5135-6643</orcidid></search><sort><creationdate>201105</creationdate><title>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</title><author>Guillet, Virginie ; Gueguen, Naïg ; Cartoni, Romain ; Chevrollier, Arnaud ; Desquiret, Valérie ; Angebault, Claire ; Amati-Bonneau, Patrizia ; Procaccio, Vincent ; Bonneau, Dominique ; Martinou, Jean-Claude ; Reynier, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2409-e48374117c696f5871fdb86479ea62ba87f1a8f01e2c560a0bfae0e648cc19cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Brain - metabolism</topic><topic>Charcot-Marie-Tooth Disease - genetics</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Charcot-Marie-Tooth Disease - pathology</topic><topic>Charcot‐Marie‐Tooth type 2A</topic><topic>Diazoxide - pharmacology</topic><topic>F0F1‐ATP synthase</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>KATP Channels - agonists</topic><topic>KATP Channels - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>potassium channel</topic><topic>succinate dehydrogenase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillet, Virginie</creatorcontrib><creatorcontrib>Gueguen, Naïg</creatorcontrib><creatorcontrib>Cartoni, Romain</creatorcontrib><creatorcontrib>Chevrollier, Arnaud</creatorcontrib><creatorcontrib>Desquiret, Valérie</creatorcontrib><creatorcontrib>Angebault, Claire</creatorcontrib><creatorcontrib>Amati-Bonneau, Patrizia</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Bonneau, Dominique</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Reynier, Pascal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillet, Virginie</au><au>Gueguen, Naïg</au><au>Cartoni, Romain</au><au>Chevrollier, Arnaud</au><au>Desquiret, Valérie</au><au>Angebault, Claire</au><au>Amati-Bonneau, Patrizia</au><au>Procaccio, Vincent</au><au>Bonneau, Dominique</au><au>Martinou, Jean-Claude</au><au>Reynier, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2011-05</date><risdate>2011</risdate><volume>25</volume><issue>5</issue><spage>1618</spage><epage>1627</epage><pages>1618-1627</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT
Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>21285398</pmid><doi>10.1096/fj.10-173609</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5135-6643</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2011-05, Vol.25 (5), p.1618-1627 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03408441v1 |
source | MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Animals Blotting, Western Brain - metabolism Charcot-Marie-Tooth Disease - genetics Charcot-Marie-Tooth Disease - metabolism Charcot-Marie-Tooth Disease - pathology Charcot‐Marie‐Tooth type 2A Diazoxide - pharmacology F0F1‐ATP synthase GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism Humans Immunoprecipitation KATP Channels - agonists KATP Channels - metabolism Life Sciences Mice Mice, Inbred C57BL Mice, Transgenic mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial Proteins - metabolism potassium channel succinate dehydrogenase |
title | Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioenergetic%20defect%20associated%20with%20mKATP%20channel%20opening%20in%20a%20mouse%20model%20carrying%20a%20mitofusin%202%20mutation&rft.jtitle=The%20FASEB%20journal&rft.au=Guillet,%20Virginie&rft.date=2011-05&rft.volume=25&rft.issue=5&rft.spage=1618&rft.epage=1627&rft.pages=1618-1627&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.10-173609&rft_dat=%3Cproquest_hal_p%3E864780815%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864780815&rft_id=info:pmid/21285398&rfr_iscdi=true |