Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation

ABSTRACT Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2011-05, Vol.25 (5), p.1618-1627
Hauptverfasser: Guillet, Virginie, Gueguen, Naïg, Cartoni, Romain, Chevrollier, Arnaud, Desquiret, Valérie, Angebault, Claire, Amati-Bonneau, Patrizia, Procaccio, Vincent, Bonneau, Dominique, Martinou, Jean-Claude, Reynier, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1627
container_issue 5
container_start_page 1618
container_title The FASEB journal
container_volume 25
creator Guillet, Virginie
Gueguen, Naïg
Cartoni, Romain
Chevrollier, Arnaud
Desquiret, Valérie
Angebault, Claire
Amati-Bonneau, Patrizia
Procaccio, Vincent
Bonneau, Dominique
Martinou, Jean-Claude
Reynier, Pascal
description ABSTRACT Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org
doi_str_mv 10.1096/fj.10-173609
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03408441v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864780815</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2409-e48374117c696f5871fdb86479ea62ba87f1a8f01e2c560a0bfae0e648cc19cb3</originalsourceid><addsrcrecordid>eNqFkU1v2zAMhoVhw5pmve086Dbs4I2UHVk6psWydgvQAmvPgixTjQJ_ZJbdIv9-StL1ugtJ8X1AUHwZ-4jwFUHLb36bcoZlLkG_YTNc5JBJJeEtm4HSIpMyV2fsPMYtACCgfM_OBAq1yLWase1l6Kmj4ZHG4HhNntzIbYy9C3akmj-HccPbX8v7O-42tuuo4f2OutA98tBxy9t-ipRinQRnh2F_UFI7jL2fYkIEb6fRjqHvPrB33jaRLl7ynD2svt9fXWfr2x83V8t1thEF6IwKlZcFYumkln6hSvR1pWRRarJSVFaVHq3ygCTcQoKFylsCkoVyDrWr8jn7cpq7sY3ZDaG1w970Npjr5docepAXoIoCnzCxn0_sbuj_TBRH04boqGlsR-lnRkuFEoUo_0seNlSg0vnn7NMLOVUt1a8r_Dt6AtQJeA4N7V91BHMw1PjtsTwaala_L8XqZ7Lt-Mz_AmXDkvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864780815</pqid></control><display><type>article</type><title>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Guillet, Virginie ; Gueguen, Naïg ; Cartoni, Romain ; Chevrollier, Arnaud ; Desquiret, Valérie ; Angebault, Claire ; Amati-Bonneau, Patrizia ; Procaccio, Vincent ; Bonneau, Dominique ; Martinou, Jean-Claude ; Reynier, Pascal</creator><creatorcontrib>Guillet, Virginie ; Gueguen, Naïg ; Cartoni, Romain ; Chevrollier, Arnaud ; Desquiret, Valérie ; Angebault, Claire ; Amati-Bonneau, Patrizia ; Procaccio, Vincent ; Bonneau, Dominique ; Martinou, Jean-Claude ; Reynier, Pascal</creatorcontrib><description>ABSTRACT Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.10-173609</identifier><identifier>PMID: 21285398</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Animals ; Blotting, Western ; Brain - metabolism ; Charcot-Marie-Tooth Disease - genetics ; Charcot-Marie-Tooth Disease - metabolism ; Charcot-Marie-Tooth Disease - pathology ; Charcot‐Marie‐Tooth type 2A ; Diazoxide - pharmacology ; F0F1‐ATP synthase ; GTP Phosphohydrolases - genetics ; GTP Phosphohydrolases - metabolism ; Humans ; Immunoprecipitation ; KATP Channels - agonists ; KATP Channels - metabolism ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Proteins - metabolism ; potassium channel ; succinate dehydrogenase</subject><ispartof>The FASEB journal, 2011-05, Vol.25 (5), p.1618-1627</ispartof><rights>FASEB</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5135-6643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.10-173609$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.10-173609$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21285398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-03408441$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillet, Virginie</creatorcontrib><creatorcontrib>Gueguen, Naïg</creatorcontrib><creatorcontrib>Cartoni, Romain</creatorcontrib><creatorcontrib>Chevrollier, Arnaud</creatorcontrib><creatorcontrib>Desquiret, Valérie</creatorcontrib><creatorcontrib>Angebault, Claire</creatorcontrib><creatorcontrib>Amati-Bonneau, Patrizia</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Bonneau, Dominique</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Reynier, Pascal</creatorcontrib><title>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Brain - metabolism</subject><subject>Charcot-Marie-Tooth Disease - genetics</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Charcot-Marie-Tooth Disease - pathology</subject><subject>Charcot‐Marie‐Tooth type 2A</subject><subject>Diazoxide - pharmacology</subject><subject>F0F1‐ATP synthase</subject><subject>GTP Phosphohydrolases - genetics</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>KATP Channels - agonists</subject><subject>KATP Channels - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>potassium channel</subject><subject>succinate dehydrogenase</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v2zAMhoVhw5pmve086Dbs4I2UHVk6psWydgvQAmvPgixTjQJ_ZJbdIv9-StL1ugtJ8X1AUHwZ-4jwFUHLb36bcoZlLkG_YTNc5JBJJeEtm4HSIpMyV2fsPMYtACCgfM_OBAq1yLWase1l6Kmj4ZHG4HhNntzIbYy9C3akmj-HccPbX8v7O-42tuuo4f2OutA98tBxy9t-ipRinQRnh2F_UFI7jL2fYkIEb6fRjqHvPrB33jaRLl7ynD2svt9fXWfr2x83V8t1thEF6IwKlZcFYumkln6hSvR1pWRRarJSVFaVHq3ygCTcQoKFylsCkoVyDrWr8jn7cpq7sY3ZDaG1w970Npjr5docepAXoIoCnzCxn0_sbuj_TBRH04boqGlsR-lnRkuFEoUo_0seNlSg0vnn7NMLOVUt1a8r_Dt6AtQJeA4N7V91BHMw1PjtsTwaala_L8XqZ7Lt-Mz_AmXDkvI</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Guillet, Virginie</creator><creator>Gueguen, Naïg</creator><creator>Cartoni, Romain</creator><creator>Chevrollier, Arnaud</creator><creator>Desquiret, Valérie</creator><creator>Angebault, Claire</creator><creator>Amati-Bonneau, Patrizia</creator><creator>Procaccio, Vincent</creator><creator>Bonneau, Dominique</creator><creator>Martinou, Jean-Claude</creator><creator>Reynier, Pascal</creator><general>Federation of American Societies for Experimental Biology</general><general>Federation of American Society of Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5135-6643</orcidid></search><sort><creationdate>201105</creationdate><title>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</title><author>Guillet, Virginie ; Gueguen, Naïg ; Cartoni, Romain ; Chevrollier, Arnaud ; Desquiret, Valérie ; Angebault, Claire ; Amati-Bonneau, Patrizia ; Procaccio, Vincent ; Bonneau, Dominique ; Martinou, Jean-Claude ; Reynier, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2409-e48374117c696f5871fdb86479ea62ba87f1a8f01e2c560a0bfae0e648cc19cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Brain - metabolism</topic><topic>Charcot-Marie-Tooth Disease - genetics</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Charcot-Marie-Tooth Disease - pathology</topic><topic>Charcot‐Marie‐Tooth type 2A</topic><topic>Diazoxide - pharmacology</topic><topic>F0F1‐ATP synthase</topic><topic>GTP Phosphohydrolases - genetics</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>KATP Channels - agonists</topic><topic>KATP Channels - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>potassium channel</topic><topic>succinate dehydrogenase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillet, Virginie</creatorcontrib><creatorcontrib>Gueguen, Naïg</creatorcontrib><creatorcontrib>Cartoni, Romain</creatorcontrib><creatorcontrib>Chevrollier, Arnaud</creatorcontrib><creatorcontrib>Desquiret, Valérie</creatorcontrib><creatorcontrib>Angebault, Claire</creatorcontrib><creatorcontrib>Amati-Bonneau, Patrizia</creatorcontrib><creatorcontrib>Procaccio, Vincent</creatorcontrib><creatorcontrib>Bonneau, Dominique</creatorcontrib><creatorcontrib>Martinou, Jean-Claude</creatorcontrib><creatorcontrib>Reynier, Pascal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillet, Virginie</au><au>Gueguen, Naïg</au><au>Cartoni, Romain</au><au>Chevrollier, Arnaud</au><au>Desquiret, Valérie</au><au>Angebault, Claire</au><au>Amati-Bonneau, Patrizia</au><au>Procaccio, Vincent</au><au>Bonneau, Dominique</au><au>Martinou, Jean-Claude</au><au>Reynier, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2011-05</date><risdate>2011</risdate><volume>25</volume><issue>5</issue><spage>1618</spage><epage>1627</epage><pages>1618-1627</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT Charcot‐Marie‐Tooth disease type 2A (CMT2A) is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2), which encodes a mitochon‐drial outer membrane protein that promotes mito‐chondrial fusion. Emerging evidence also points to a role of MFN2 in the regulation of mitochondrial metabolism. To examine whether mitochondrial dysfunction is a feature of CMT2A, we used a transgenic mouse model expressing in neurons a mutated R94Q form of human MFN2 shown to induce a CMT2A phenotype. Oxygraphic and enzymatic measurements both revealed a combined defect of mitochondrial complexes II and V (40 and 30% decrease, respectively) in the brain of Tg‐R94 mice, leading to a drastic decrease of ATP synthesis. These deficiencies were reversed by the mitochondrial ATP‐sensitive potassium channel (mKATP) inhibitor 5‐hydroxyde‐canoate. Conversely, in controls and wild‐type human MFN2 mice, the mKATP activator diazoxide mimicked the deficiency observed with the R94Q mutation. The physical links between complexes II and V, previously proposed as part of mKATP, were reinforced in Tg‐R94Q mice. Our results show that the R94Q MFN2 mutation induces a combined defect of complexes II and V linked to the opening of mKATP, which could participate in the pathophysiology of the disease.—Guillet, V., Gueguen, N., Cartoni, R., Chevrollier, A., Desquiret, V., Angebault, C., Amati‐Bonneau, P., Procaccio, V., Bonneau, D., Martinou, J.‐C., Reynier, P. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J. 25, 1618–1627 (2011). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>21285398</pmid><doi>10.1096/fj.10-173609</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5135-6643</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2011-05, Vol.25 (5), p.1618-1627
issn 0892-6638
1530-6860
language eng
recordid cdi_hal_primary_oai_HAL_hal_03408441v1
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects Animals
Blotting, Western
Brain - metabolism
Charcot-Marie-Tooth Disease - genetics
Charcot-Marie-Tooth Disease - metabolism
Charcot-Marie-Tooth Disease - pathology
Charcot‐Marie‐Tooth type 2A
Diazoxide - pharmacology
F0F1‐ATP synthase
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Humans
Immunoprecipitation
KATP Channels - agonists
KATP Channels - metabolism
Life Sciences
Mice
Mice, Inbred C57BL
Mice, Transgenic
mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Proteins - metabolism
potassium channel
succinate dehydrogenase
title Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioenergetic%20defect%20associated%20with%20mKATP%20channel%20opening%20in%20a%20mouse%20model%20carrying%20a%20mitofusin%202%20mutation&rft.jtitle=The%20FASEB%20journal&rft.au=Guillet,%20Virginie&rft.date=2011-05&rft.volume=25&rft.issue=5&rft.spage=1618&rft.epage=1627&rft.pages=1618-1627&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.10-173609&rft_dat=%3Cproquest_hal_p%3E864780815%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864780815&rft_id=info:pmid/21285398&rfr_iscdi=true