Combining Fluorescence Fluctuations and Photobleaching to Quantify Surface Density

We have established a self-calibrated method, called pbFFS for photobleaching fluctuation fluorescence spectroscopy, which aims to characterize molecules or particles labeled with an unknown distribution of fluorophores. Using photobleaching as a control parameter, pbFFS provides information on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-05, Vol.94 (17), p.6521-6528
Hauptverfasser: Sefkow-Werner, Julius, Migliorini, Elisa, Picart, Catherine, Wahyuni, Dwiria, Wang, Irène, Delon, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have established a self-calibrated method, called pbFFS for photobleaching fluctuation fluorescence spectroscopy, which aims to characterize molecules or particles labeled with an unknown distribution of fluorophores. Using photobleaching as a control parameter, pbFFS provides information on the distribution of fluorescent labels and a reliable estimation of the absolute density or concentration of these molecules. We present a complete theoretical derivation of the pbFFS approach and experimentally apply it to measure the surface density of a monolayer of fluorescently tagged streptavidin molecules, which can be used as a base platform for biomimetic systems. The surface density measured by pbFFS is consistent with the results of spectroscopic ellipsometry, a standard surface technique. However, pbFFS has two main advantages: it enables in situ characterization (no dedicated substrates are required) and can be applied to low masses of adsorbed molecules, which we demonstrate here by quantifying the density of biotin-Atto molecules that bind to the streptavidin layer. In addition to molecules immobilized on a surface, we also applied pbFFS to molecules diffusing in solution, to confirm the distribution of fluorescent labels found on a surface. Hence, pbFFS provides a set of tools for investigating the molecules labeled with a variable number of fluorophores, with the aim of quantifying either the number of molecules or the distribution of fluorescent labels, the latter case being especially relevant for oligomerization studies.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c05513