The Cobb–Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities
By defining the Variable Output Elasticities Cobb–Douglas function, this article shows that a large class of production functions can be written as a Cobb–Douglas function with non-constant output elasticity. Compared to standard flexible functions such as the Translog function, this framework has s...
Gespeichert in:
Veröffentlicht in: | Mathematical social sciences 2019-01, Vol.97, p.11-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Mathematical social sciences |
container_volume | 97 |
creator | Reynès, Frédéric |
description | By defining the Variable Output Elasticities Cobb–Douglas function, this article shows that a large class of production functions can be written as a Cobb–Douglas function with non-constant output elasticity. Compared to standard flexible functions such as the Translog function, this framework has several advantages. [1] It does not require the use of a second order approximation. [2] This greatly facilitates the deduction of linear input demands function without the need of involving the duality theorem. [3] It allows for a tractable generalization of the CES function to the case where the elasticity of substitution between each pair of inputs is not necessarily the same. [4] This provides a more general and more flexible framework compared to the traditional nested CES approach while facilitating the analyze of the substitution properties of nested CES functions. The case of substitutions between energy, capital and labor is provided. |
doi_str_mv | 10.1016/j.mathsocsci.2018.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03403639v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206276754</sourcerecordid><originalsourceid>FETCH-LOGICAL-g282t-fdf9257dc713d11bcb96d4af637bc421819a05a11e71bdd48baf9ed3b8d3b7b63</originalsourceid><addsrcrecordid>eNpFjstOwzAQRS0EEqXwD5ZYsUjxI7EddlV5FKkSm7KO7GTSuErjEDs8dqz4Af6QL8GoCBajOzo6ujMIYUpmlFBxuZ3tdGi8K31pZ4xQFfGMEHaAJlTJPOGUqkM0iWqWpCoXx-jE-y0hREZ5gj7WDeCFM-br_fPajZtWe1yPXRms63DcNa5beLWmhT98hee4gxfcw-B7iOgZcJQbt3Mb6MCN_w0eh2aIrU1MwC1E4GrsxtCPAUO8FWxpgwV_io5q3Xo4-80pery9WS-Wyerh7n4xXyUbplhI6qrOWSarUlJeUWpKk4sq1bXg0pQpo4rmmmSaUpDUVFWqjK5zqLhRcaQRfIou9r2Nbot-sDs9vBVO22I5XxU_jPCUcMHzZxrd873bD-5pBB-KrRuHLr5XMEYEk0JmKf8Gw5541g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206276754</pqid></control><display><type>article</type><title>The Cobb–Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Reynès, Frédéric</creator><creatorcontrib>Reynès, Frédéric</creatorcontrib><description>By defining the Variable Output Elasticities Cobb–Douglas function, this article shows that a large class of production functions can be written as a Cobb–Douglas function with non-constant output elasticity. Compared to standard flexible functions such as the Translog function, this framework has several advantages. [1] It does not require the use of a second order approximation. [2] This greatly facilitates the deduction of linear input demands function without the need of involving the duality theorem. [3] It allows for a tractable generalization of the CES function to the case where the elasticity of substitution between each pair of inputs is not necessarily the same. [4] This provides a more general and more flexible framework compared to the traditional nested CES approach while facilitating the analyze of the substitution properties of nested CES functions. The case of substitutions between energy, capital and labor is provided.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/j.mathsocsci.2018.10.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier Science Ltd</publisher><subject>Approximation ; Deduction ; Economics and Finance ; Elasticity ; Humanities and Social Sciences ; Linear equations ; Mathematical functions ; Theorems</subject><ispartof>Mathematical social sciences, 2019-01, Vol.97, p.11-17</ispartof><rights>Copyright Elsevier Science Ltd. Jan 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://sciencespo.hal.science/hal-03403639$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Reynès, Frédéric</creatorcontrib><title>The Cobb–Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities</title><title>Mathematical social sciences</title><description>By defining the Variable Output Elasticities Cobb–Douglas function, this article shows that a large class of production functions can be written as a Cobb–Douglas function with non-constant output elasticity. Compared to standard flexible functions such as the Translog function, this framework has several advantages. [1] It does not require the use of a second order approximation. [2] This greatly facilitates the deduction of linear input demands function without the need of involving the duality theorem. [3] It allows for a tractable generalization of the CES function to the case where the elasticity of substitution between each pair of inputs is not necessarily the same. [4] This provides a more general and more flexible framework compared to the traditional nested CES approach while facilitating the analyze of the substitution properties of nested CES functions. The case of substitutions between energy, capital and labor is provided.</description><subject>Approximation</subject><subject>Deduction</subject><subject>Economics and Finance</subject><subject>Elasticity</subject><subject>Humanities and Social Sciences</subject><subject>Linear equations</subject><subject>Mathematical functions</subject><subject>Theorems</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFjstOwzAQRS0EEqXwD5ZYsUjxI7EddlV5FKkSm7KO7GTSuErjEDs8dqz4Af6QL8GoCBajOzo6ujMIYUpmlFBxuZ3tdGi8K31pZ4xQFfGMEHaAJlTJPOGUqkM0iWqWpCoXx-jE-y0hREZ5gj7WDeCFM-br_fPajZtWe1yPXRms63DcNa5beLWmhT98hee4gxfcw-B7iOgZcJQbt3Mb6MCN_w0eh2aIrU1MwC1E4GrsxtCPAUO8FWxpgwV_io5q3Xo4-80pery9WS-Wyerh7n4xXyUbplhI6qrOWSarUlJeUWpKk4sq1bXg0pQpo4rmmmSaUpDUVFWqjK5zqLhRcaQRfIou9r2Nbot-sDs9vBVO22I5XxU_jPCUcMHzZxrd873bD-5pBB-KrRuHLr5XMEYEk0JmKf8Gw5541g</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Reynès, Frédéric</creator><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope></search><sort><creationdate>20190101</creationdate><title>The Cobb–Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities</title><author>Reynès, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g282t-fdf9257dc713d11bcb96d4af637bc421819a05a11e71bdd48baf9ed3b8d3b7b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Deduction</topic><topic>Economics and Finance</topic><topic>Elasticity</topic><topic>Humanities and Social Sciences</topic><topic>Linear equations</topic><topic>Mathematical functions</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynès, Frédéric</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynès, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Cobb–Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities</atitle><jtitle>Mathematical social sciences</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>97</volume><spage>11</spage><epage>17</epage><pages>11-17</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>By defining the Variable Output Elasticities Cobb–Douglas function, this article shows that a large class of production functions can be written as a Cobb–Douglas function with non-constant output elasticity. Compared to standard flexible functions such as the Translog function, this framework has several advantages. [1] It does not require the use of a second order approximation. [2] This greatly facilitates the deduction of linear input demands function without the need of involving the duality theorem. [3] It allows for a tractable generalization of the CES function to the case where the elasticity of substitution between each pair of inputs is not necessarily the same. [4] This provides a more general and more flexible framework compared to the traditional nested CES approach while facilitating the analyze of the substitution properties of nested CES functions. The case of substitutions between energy, capital and labor is provided.</abstract><cop>Amsterdam</cop><pub>Elsevier Science Ltd</pub><doi>10.1016/j.mathsocsci.2018.10.002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-4896 |
ispartof | Mathematical social sciences, 2019-01, Vol.97, p.11-17 |
issn | 0165-4896 1879-3118 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03403639v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Deduction Economics and Finance Elasticity Humanities and Social Sciences Linear equations Mathematical functions Theorems |
title | The Cobb–Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Cobb%E2%80%93Douglas%20function%20as%20a%20flexible%20function:%20A%20new%20perspective%20on%20homogeneous%20functions%20through%20the%20lens%20of%20output%20elasticities&rft.jtitle=Mathematical%20social%20sciences&rft.au=Reyn%C3%A8s,%20Fr%C3%A9d%C3%A9ric&rft.date=2019-01-01&rft.volume=97&rft.spage=11&rft.epage=17&rft.pages=11-17&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/j.mathsocsci.2018.10.002&rft_dat=%3Cproquest_hal_p%3E2206276754%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206276754&rft_id=info:pmid/&rfr_iscdi=true |