Electrochemical calcareous deposition in seawater. A review

Pollution and climate change issues are calling for advanced techniques of pollutant sequestration to decrease toxicity, of coral and costal remediation, and of carbon sequestration to decrease atmospheric CO 2 levels. For that, calcareous deposition appears as an overlooked, but potentially efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental chemistry letters 2020-07, Vol.18 (4), p.1193-1208
Hauptverfasser: Carré, Charlotte, Zanibellato, Alaric, Jeannin, Marc, Sabot, René, Gunkel-Grillon, Peggy, Serres, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 4
container_start_page 1193
container_title Environmental chemistry letters
container_volume 18
creator Carré, Charlotte
Zanibellato, Alaric
Jeannin, Marc
Sabot, René
Gunkel-Grillon, Peggy
Serres, Arnaud
description Pollution and climate change issues are calling for advanced techniques of pollutant sequestration to decrease toxicity, of coral and costal remediation, and of carbon sequestration to decrease atmospheric CO 2 levels. For that, calcareous deposition appears as an overlooked, but potentially efficient technique. The calcareous deposit is a well-known precipitation by-product of cathodic protection in seawater. The deposit is made of a mixture of CaCO 3 and Mg(OH) 2 . A calcareous deposit is formed electrochemically when a metal connected to an electrical power source is immersed in seawater. So far, electrochemical calcareous deposition has seldomly found applications, except for speedup of coral growth, prevention of shore erosion, reinforcement of artificial marine structures and remediation of polluted seawater. Here, we review the principles and mechanisms of electrochemical calcareous deposition. The growth, composition and mechanical properties of calcareous deposits are controlled by several factors such as 1) the impact of electrochemical parameters on the Ca/Mg ratio. For instance, CaCO 3 formation is favoured at low cathodic potentials and low currents, whereas Mg(OH) 2 precipitates preferentially at high cathodic potentials and high applied current; 2) the nature of the metallic electrode: although lime could be deposited onto any metallic surface at a fixed potential, electrochemical reactions and deposit composition are controlled by the metal nature. Moreover, the state of the electrode surface, e.g. with the presence of oxides or biofilms, modifies the kinetics of deposit formation; and 3) electrolyte composition, pH, temperature and stirring. For instance, in seawater, Ca 2+ and Mg 2+ concentrations control the allotropic variety of CaCO 3 formed, e.g. Mg 2+ inhibits the formation of calcite and vaterite. Hydrodynamic conditions near the electrode also influence the deposit composition since conditions regulate the mass transport at the electrode–solution interface. Below 10 °C, aragonite is not formed and the deposit stays thin. In the first stage of the deposit formation, an Mg-based compound is formed, followed by the growth of a Ca-based compound with time.
doi_str_mv 10.1007/s10311-020-01002-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03389392v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416298038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-685820c33f080ead0611724fec0eb86a8d7fc9d4ee32829122a3ad561a3ba9483</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKsv4GnBk8jWSbKbzYKXUqoVCl70HNLsrI3UTU22LfZpfBafzNSVehMPIcPwfcPMT8g5hQEFKK4DBU5pCgxSiA2Wbg9IjwoKKReCHu7rnB-TkxBeIsIKxnrkZrxA03pn5vhqjV4k8Rnt0a1CUuHSBdta1yS2SQLqjW7RDz4_honHtcXNKTmq9SLg2c_fJ0-348fRJJ0-3N2PhtPU8Jy3qZC5ZGA4r0EC6goEpQXLajSAMym0rIralFWGyJlkJWVMc13lgmo-02UmeZ9cdnPneqGW3r5q_66ctmoynKpdDziXJS_Zmkb2omOX3r2tMLTqxa18E9dTLKOClRL4biLrKONdCB7r_VgKapeo6hJVMVH1najaRumqkzY4c3UwFhuDexEA8owJWZSxinKfyP_TI9vqXdAjt2raqPJODRFvntH_3vDHel_fpZjl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416298038</pqid></control><display><type>article</type><title>Electrochemical calcareous deposition in seawater. A review</title><source>SpringerNature Journals</source><creator>Carré, Charlotte ; Zanibellato, Alaric ; Jeannin, Marc ; Sabot, René ; Gunkel-Grillon, Peggy ; Serres, Arnaud</creator><creatorcontrib>Carré, Charlotte ; Zanibellato, Alaric ; Jeannin, Marc ; Sabot, René ; Gunkel-Grillon, Peggy ; Serres, Arnaud</creatorcontrib><description>Pollution and climate change issues are calling for advanced techniques of pollutant sequestration to decrease toxicity, of coral and costal remediation, and of carbon sequestration to decrease atmospheric CO 2 levels. For that, calcareous deposition appears as an overlooked, but potentially efficient technique. The calcareous deposit is a well-known precipitation by-product of cathodic protection in seawater. The deposit is made of a mixture of CaCO 3 and Mg(OH) 2 . A calcareous deposit is formed electrochemically when a metal connected to an electrical power source is immersed in seawater. So far, electrochemical calcareous deposition has seldomly found applications, except for speedup of coral growth, prevention of shore erosion, reinforcement of artificial marine structures and remediation of polluted seawater. Here, we review the principles and mechanisms of electrochemical calcareous deposition. The growth, composition and mechanical properties of calcareous deposits are controlled by several factors such as 1) the impact of electrochemical parameters on the Ca/Mg ratio. For instance, CaCO 3 formation is favoured at low cathodic potentials and low currents, whereas Mg(OH) 2 precipitates preferentially at high cathodic potentials and high applied current; 2) the nature of the metallic electrode: although lime could be deposited onto any metallic surface at a fixed potential, electrochemical reactions and deposit composition are controlled by the metal nature. Moreover, the state of the electrode surface, e.g. with the presence of oxides or biofilms, modifies the kinetics of deposit formation; and 3) electrolyte composition, pH, temperature and stirring. For instance, in seawater, Ca 2+ and Mg 2+ concentrations control the allotropic variety of CaCO 3 formed, e.g. Mg 2+ inhibits the formation of calcite and vaterite. Hydrodynamic conditions near the electrode also influence the deposit composition since conditions regulate the mass transport at the electrode–solution interface. Below 10 °C, aragonite is not formed and the deposit stays thin. In the first stage of the deposit formation, an Mg-based compound is formed, followed by the growth of a Ca-based compound with time.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-020-01002-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Aragonite ; Biofilms ; Calcite ; Calcium carbonate ; Calcium ions ; Carbon dioxide ; Carbon sequestration ; Carbonate sediments ; Cathodic protection ; Chemical reactions ; Chemistry ; Chemistry, Multidisciplinary ; Climate change ; Composition ; Corals ; Deposition ; Earth and Environmental Science ; Ecotoxicology ; Electric power ; Electrochemistry ; Electrodes ; Engineering ; Engineering, Environmental ; Environment ; Environmental Chemistry ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Geochemistry ; Growth ; Hydrodynamics ; Kinetics ; Life Sciences ; Life Sciences &amp; Biomedicine ; Low currents ; Magnesium ; Magnesium compounds ; Marine invertebrates ; Marine pollution ; Mass transport ; Mechanical properties ; Metals ; Offshore structures ; Oxides ; Physical Sciences ; Pollutants ; Pollution ; Precipitates ; Reaction kinetics ; Remediation ; Review ; Science &amp; Technology ; Seawater ; Technology ; Toxicity</subject><ispartof>Environmental chemistry letters, 2020-07, Vol.18 (4), p.1193-1208</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>48</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542687900010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c353t-685820c33f080ead0611724fec0eb86a8d7fc9d4ee32829122a3ad561a3ba9483</citedby><cites>FETCH-LOGICAL-c353t-685820c33f080ead0611724fec0eb86a8d7fc9d4ee32829122a3ad561a3ba9483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10311-020-01002-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10311-020-01002-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03389392$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carré, Charlotte</creatorcontrib><creatorcontrib>Zanibellato, Alaric</creatorcontrib><creatorcontrib>Jeannin, Marc</creatorcontrib><creatorcontrib>Sabot, René</creatorcontrib><creatorcontrib>Gunkel-Grillon, Peggy</creatorcontrib><creatorcontrib>Serres, Arnaud</creatorcontrib><title>Electrochemical calcareous deposition in seawater. A review</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><addtitle>ENVIRON CHEM LETT</addtitle><description>Pollution and climate change issues are calling for advanced techniques of pollutant sequestration to decrease toxicity, of coral and costal remediation, and of carbon sequestration to decrease atmospheric CO 2 levels. For that, calcareous deposition appears as an overlooked, but potentially efficient technique. The calcareous deposit is a well-known precipitation by-product of cathodic protection in seawater. The deposit is made of a mixture of CaCO 3 and Mg(OH) 2 . A calcareous deposit is formed electrochemically when a metal connected to an electrical power source is immersed in seawater. So far, electrochemical calcareous deposition has seldomly found applications, except for speedup of coral growth, prevention of shore erosion, reinforcement of artificial marine structures and remediation of polluted seawater. Here, we review the principles and mechanisms of electrochemical calcareous deposition. The growth, composition and mechanical properties of calcareous deposits are controlled by several factors such as 1) the impact of electrochemical parameters on the Ca/Mg ratio. For instance, CaCO 3 formation is favoured at low cathodic potentials and low currents, whereas Mg(OH) 2 precipitates preferentially at high cathodic potentials and high applied current; 2) the nature of the metallic electrode: although lime could be deposited onto any metallic surface at a fixed potential, electrochemical reactions and deposit composition are controlled by the metal nature. Moreover, the state of the electrode surface, e.g. with the presence of oxides or biofilms, modifies the kinetics of deposit formation; and 3) electrolyte composition, pH, temperature and stirring. For instance, in seawater, Ca 2+ and Mg 2+ concentrations control the allotropic variety of CaCO 3 formed, e.g. Mg 2+ inhibits the formation of calcite and vaterite. Hydrodynamic conditions near the electrode also influence the deposit composition since conditions regulate the mass transport at the electrode–solution interface. Below 10 °C, aragonite is not formed and the deposit stays thin. In the first stage of the deposit formation, an Mg-based compound is formed, followed by the growth of a Ca-based compound with time.</description><subject>Analytical Chemistry</subject><subject>Aragonite</subject><subject>Biofilms</subject><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Calcium ions</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbonate sediments</subject><subject>Cathodic protection</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Climate change</subject><subject>Composition</subject><subject>Corals</subject><subject>Deposition</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electric power</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Geochemistry</subject><subject>Growth</subject><subject>Hydrodynamics</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Low currents</subject><subject>Magnesium</subject><subject>Magnesium compounds</subject><subject>Marine invertebrates</subject><subject>Marine pollution</subject><subject>Mass transport</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Offshore structures</subject><subject>Oxides</subject><subject>Physical Sciences</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Precipitates</subject><subject>Reaction kinetics</subject><subject>Remediation</subject><subject>Review</subject><subject>Science &amp; Technology</subject><subject>Seawater</subject><subject>Technology</subject><subject>Toxicity</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMFKAzEQhoMoWKsv4GnBk8jWSbKbzYKXUqoVCl70HNLsrI3UTU22LfZpfBafzNSVehMPIcPwfcPMT8g5hQEFKK4DBU5pCgxSiA2Wbg9IjwoKKReCHu7rnB-TkxBeIsIKxnrkZrxA03pn5vhqjV4k8Rnt0a1CUuHSBdta1yS2SQLqjW7RDz4_honHtcXNKTmq9SLg2c_fJ0-348fRJJ0-3N2PhtPU8Jy3qZC5ZGA4r0EC6goEpQXLajSAMym0rIralFWGyJlkJWVMc13lgmo-02UmeZ9cdnPneqGW3r5q_66ctmoynKpdDziXJS_Zmkb2omOX3r2tMLTqxa18E9dTLKOClRL4biLrKONdCB7r_VgKapeo6hJVMVH1najaRumqkzY4c3UwFhuDexEA8owJWZSxinKfyP_TI9vqXdAjt2raqPJODRFvntH_3vDHel_fpZjl</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Carré, Charlotte</creator><creator>Zanibellato, Alaric</creator><creator>Jeannin, Marc</creator><creator>Sabot, René</creator><creator>Gunkel-Grillon, Peggy</creator><creator>Serres, Arnaud</creator><general>Springer International Publishing</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>20200701</creationdate><title>Electrochemical calcareous deposition in seawater. A review</title><author>Carré, Charlotte ; Zanibellato, Alaric ; Jeannin, Marc ; Sabot, René ; Gunkel-Grillon, Peggy ; Serres, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-685820c33f080ead0611724fec0eb86a8d7fc9d4ee32829122a3ad561a3ba9483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Aragonite</topic><topic>Biofilms</topic><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Calcium ions</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbonate sediments</topic><topic>Cathodic protection</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Climate change</topic><topic>Composition</topic><topic>Corals</topic><topic>Deposition</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electric power</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Geochemistry</topic><topic>Growth</topic><topic>Hydrodynamics</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Low currents</topic><topic>Magnesium</topic><topic>Magnesium compounds</topic><topic>Marine invertebrates</topic><topic>Marine pollution</topic><topic>Mass transport</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Offshore structures</topic><topic>Oxides</topic><topic>Physical Sciences</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Precipitates</topic><topic>Reaction kinetics</topic><topic>Remediation</topic><topic>Review</topic><topic>Science &amp; Technology</topic><topic>Seawater</topic><topic>Technology</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carré, Charlotte</creatorcontrib><creatorcontrib>Zanibellato, Alaric</creatorcontrib><creatorcontrib>Jeannin, Marc</creatorcontrib><creatorcontrib>Sabot, René</creatorcontrib><creatorcontrib>Gunkel-Grillon, Peggy</creatorcontrib><creatorcontrib>Serres, Arnaud</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carré, Charlotte</au><au>Zanibellato, Alaric</au><au>Jeannin, Marc</au><au>Sabot, René</au><au>Gunkel-Grillon, Peggy</au><au>Serres, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical calcareous deposition in seawater. A review</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><stitle>ENVIRON CHEM LETT</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>18</volume><issue>4</issue><spage>1193</spage><epage>1208</epage><pages>1193-1208</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>Pollution and climate change issues are calling for advanced techniques of pollutant sequestration to decrease toxicity, of coral and costal remediation, and of carbon sequestration to decrease atmospheric CO 2 levels. For that, calcareous deposition appears as an overlooked, but potentially efficient technique. The calcareous deposit is a well-known precipitation by-product of cathodic protection in seawater. The deposit is made of a mixture of CaCO 3 and Mg(OH) 2 . A calcareous deposit is formed electrochemically when a metal connected to an electrical power source is immersed in seawater. So far, electrochemical calcareous deposition has seldomly found applications, except for speedup of coral growth, prevention of shore erosion, reinforcement of artificial marine structures and remediation of polluted seawater. Here, we review the principles and mechanisms of electrochemical calcareous deposition. The growth, composition and mechanical properties of calcareous deposits are controlled by several factors such as 1) the impact of electrochemical parameters on the Ca/Mg ratio. For instance, CaCO 3 formation is favoured at low cathodic potentials and low currents, whereas Mg(OH) 2 precipitates preferentially at high cathodic potentials and high applied current; 2) the nature of the metallic electrode: although lime could be deposited onto any metallic surface at a fixed potential, electrochemical reactions and deposit composition are controlled by the metal nature. Moreover, the state of the electrode surface, e.g. with the presence of oxides or biofilms, modifies the kinetics of deposit formation; and 3) electrolyte composition, pH, temperature and stirring. For instance, in seawater, Ca 2+ and Mg 2+ concentrations control the allotropic variety of CaCO 3 formed, e.g. Mg 2+ inhibits the formation of calcite and vaterite. Hydrodynamic conditions near the electrode also influence the deposit composition since conditions regulate the mass transport at the electrode–solution interface. Below 10 °C, aragonite is not formed and the deposit stays thin. In the first stage of the deposit formation, an Mg-based compound is formed, followed by the growth of a Ca-based compound with time.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-020-01002-z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-3653
ispartof Environmental chemistry letters, 2020-07, Vol.18 (4), p.1193-1208
issn 1610-3653
1610-3661
language eng
recordid cdi_hal_primary_oai_HAL_hal_03389392v1
source SpringerNature Journals
subjects Analytical Chemistry
Aragonite
Biofilms
Calcite
Calcium carbonate
Calcium ions
Carbon dioxide
Carbon sequestration
Carbonate sediments
Cathodic protection
Chemical reactions
Chemistry
Chemistry, Multidisciplinary
Climate change
Composition
Corals
Deposition
Earth and Environmental Science
Ecotoxicology
Electric power
Electrochemistry
Electrodes
Engineering
Engineering, Environmental
Environment
Environmental Chemistry
Environmental Sciences
Environmental Sciences & Ecology
Geochemistry
Growth
Hydrodynamics
Kinetics
Life Sciences
Life Sciences & Biomedicine
Low currents
Magnesium
Magnesium compounds
Marine invertebrates
Marine pollution
Mass transport
Mechanical properties
Metals
Offshore structures
Oxides
Physical Sciences
Pollutants
Pollution
Precipitates
Reaction kinetics
Remediation
Review
Science & Technology
Seawater
Technology
Toxicity
title Electrochemical calcareous deposition in seawater. A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20calcareous%20deposition%20in%20seawater.%C2%A0A%20review&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Carr%C3%A9,%20Charlotte&rft.date=2020-07-01&rft.volume=18&rft.issue=4&rft.spage=1193&rft.epage=1208&rft.pages=1193-1208&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-020-01002-z&rft_dat=%3Cproquest_hal_p%3E2416298038%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416298038&rft_id=info:pmid/&rfr_iscdi=true