Sparse Hard-Disk Packings and Local Markov Chains

We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We first generate such Böröczky packings in a square box with periodic boundary conditions and analyze their properties. We then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2022-06, Vol.187 (3), Article 31
Hauptverfasser: Höllmer, Philipp, Noirault, Nicolas, Li, Botao, Maggs, A. C., Krauth, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of statistical physics
container_volume 187
creator Höllmer, Philipp
Noirault, Nicolas
Li, Botao
Maggs, A. C.
Krauth, Werner
description We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We first generate such Böröczky packings in a square box with periodic boundary conditions and analyze their properties. We then study how local MCMC algorithms, namely the Metropolis algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configurations that are obtained from the packings by slightly reducing all disk radii by a relaxation parameter. We obtain two classes of ECMC, one in which the escape time varies algebraically with the relaxation parameter (as for the local Metropolis algorithm) and another in which the escape time scales as the logarithm of the relaxation parameter. A scaling analysis is confirmed by simulation results. We discuss the connectivity of the hard-disk sample space, the ergodicity of local MCMC algorithms, as well as the meaning of packings in the context of the NPT ensemble. Our work is accompanied by open-source, arbitrary-precision software for Böröczky packings (in Python) and for straight, reflective, forward, and Newtonian ECMC (in Go).
doi_str_mv 10.1007/s10955-022-02908-4
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03379780v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701332880</galeid><sourcerecordid>A701332880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-77b176c6a77f6ce640715837b8aba6ee4a9bdd7c09c7d4a61b3cf2173d6b59763</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCJw9bJ8km2RxL_ahQUVDPYTabbbcfuzVpC_57s67oTcIQmHmfmZeXkEsKIwqgbgIFLUQKjMXSkKfZERlQoViqJeXHZADdKFNUnJKzEJYAoHMtBoS-btEHl0zRl-ltHVbJC9pV3cxDgk2ZzFqL6-QJ_ao9JJMF1k04JycVroO7-PmH5P3-7m0yTWfPD4-T8Sy1AtguVaqgSlqJSlXSOplBPJ5zVeRYoHQuQ12UpbKgrSozlLTgtmJU8VIWQivJh-S637vAtdn6eoP-07RYm-l4ZroecK60yuFAo_aq1259-7F3YWeW7d430Z5hUnAhmRDdxlGvmuPambqp2p1HG1_pNrVtG1fVsT9WQDlneQ4RYD1gfRuCd9WvDwqmy930uZsYrvnO3WQR4j0UoriZO__n5R_qCz40gf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653562556</pqid></control><display><type>article</type><title>Sparse Hard-Disk Packings and Local Markov Chains</title><source>SpringerLink Journals</source><creator>Höllmer, Philipp ; Noirault, Nicolas ; Li, Botao ; Maggs, A. C. ; Krauth, Werner</creator><creatorcontrib>Höllmer, Philipp ; Noirault, Nicolas ; Li, Botao ; Maggs, A. C. ; Krauth, Werner</creatorcontrib><description>We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We first generate such Böröczky packings in a square box with periodic boundary conditions and analyze their properties. We then study how local MCMC algorithms, namely the Metropolis algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configurations that are obtained from the packings by slightly reducing all disk radii by a relaxation parameter. We obtain two classes of ECMC, one in which the escape time varies algebraically with the relaxation parameter (as for the local Metropolis algorithm) and another in which the escape time scales as the logarithm of the relaxation parameter. A scaling analysis is confirmed by simulation results. We discuss the connectivity of the hard-disk sample space, the ergodicity of local MCMC algorithms, as well as the meaning of packings in the context of the NPT ensemble. Our work is accompanied by open-source, arbitrary-precision software for Böröczky packings (in Python) and for straight, reflective, forward, and Newtonian ECMC (in Go).</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-022-02908-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Boundary conditions ; Condensed Matter ; Markov chains ; Markov processes ; Mathematical and Computational Physics ; Parameters ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Mechanics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2022-06, Vol.187 (3), Article 31</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-77b176c6a77f6ce640715837b8aba6ee4a9bdd7c09c7d4a61b3cf2173d6b59763</citedby><cites>FETCH-LOGICAL-c502t-77b176c6a77f6ce640715837b8aba6ee4a9bdd7c09c7d4a61b3cf2173d6b59763</cites><orcidid>0000-0003-0183-6726 ; 0000-0002-9071-5063 ; 0000-0002-6800-5954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-022-02908-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-022-02908-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03379780$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Höllmer, Philipp</creatorcontrib><creatorcontrib>Noirault, Nicolas</creatorcontrib><creatorcontrib>Li, Botao</creatorcontrib><creatorcontrib>Maggs, A. C.</creatorcontrib><creatorcontrib>Krauth, Werner</creatorcontrib><title>Sparse Hard-Disk Packings and Local Markov Chains</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We first generate such Böröczky packings in a square box with periodic boundary conditions and analyze their properties. We then study how local MCMC algorithms, namely the Metropolis algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configurations that are obtained from the packings by slightly reducing all disk radii by a relaxation parameter. We obtain two classes of ECMC, one in which the escape time varies algebraically with the relaxation parameter (as for the local Metropolis algorithm) and another in which the escape time scales as the logarithm of the relaxation parameter. A scaling analysis is confirmed by simulation results. We discuss the connectivity of the hard-disk sample space, the ergodicity of local MCMC algorithms, as well as the meaning of packings in the context of the NPT ensemble. Our work is accompanied by open-source, arbitrary-precision software for Böröczky packings (in Python) and for straight, reflective, forward, and Newtonian ECMC (in Go).</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Condensed Matter</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Mechanics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCJw9bJ8km2RxL_ahQUVDPYTabbbcfuzVpC_57s67oTcIQmHmfmZeXkEsKIwqgbgIFLUQKjMXSkKfZERlQoViqJeXHZADdKFNUnJKzEJYAoHMtBoS-btEHl0zRl-ltHVbJC9pV3cxDgk2ZzFqL6-QJ_ao9JJMF1k04JycVroO7-PmH5P3-7m0yTWfPD4-T8Sy1AtguVaqgSlqJSlXSOplBPJ5zVeRYoHQuQ12UpbKgrSozlLTgtmJU8VIWQivJh-S637vAtdn6eoP-07RYm-l4ZroecK60yuFAo_aq1259-7F3YWeW7d430Z5hUnAhmRDdxlGvmuPambqp2p1HG1_pNrVtG1fVsT9WQDlneQ4RYD1gfRuCd9WvDwqmy930uZsYrvnO3WQR4j0UoriZO__n5R_qCz40gf4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Höllmer, Philipp</creator><creator>Noirault, Nicolas</creator><creator>Li, Botao</creator><creator>Maggs, A. C.</creator><creator>Krauth, Werner</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0183-6726</orcidid><orcidid>https://orcid.org/0000-0002-9071-5063</orcidid><orcidid>https://orcid.org/0000-0002-6800-5954</orcidid></search><sort><creationdate>20220601</creationdate><title>Sparse Hard-Disk Packings and Local Markov Chains</title><author>Höllmer, Philipp ; Noirault, Nicolas ; Li, Botao ; Maggs, A. C. ; Krauth, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-77b176c6a77f6ce640715837b8aba6ee4a9bdd7c09c7d4a61b3cf2173d6b59763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Condensed Matter</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Mechanics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höllmer, Philipp</creatorcontrib><creatorcontrib>Noirault, Nicolas</creatorcontrib><creatorcontrib>Li, Botao</creatorcontrib><creatorcontrib>Maggs, A. C.</creatorcontrib><creatorcontrib>Krauth, Werner</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höllmer, Philipp</au><au>Noirault, Nicolas</au><au>Li, Botao</au><au>Maggs, A. C.</au><au>Krauth, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Hard-Disk Packings and Local Markov Chains</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>187</volume><issue>3</issue><artnum>31</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a model for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms. We first generate such Böröczky packings in a square box with periodic boundary conditions and analyze their properties. We then study how local MCMC algorithms, namely the Metropolis algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configurations that are obtained from the packings by slightly reducing all disk radii by a relaxation parameter. We obtain two classes of ECMC, one in which the escape time varies algebraically with the relaxation parameter (as for the local Metropolis algorithm) and another in which the escape time scales as the logarithm of the relaxation parameter. A scaling analysis is confirmed by simulation results. We discuss the connectivity of the hard-disk sample space, the ergodicity of local MCMC algorithms, as well as the meaning of packings in the context of the NPT ensemble. Our work is accompanied by open-source, arbitrary-precision software for Böröczky packings (in Python) and for straight, reflective, forward, and Newtonian ECMC (in Go).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-022-02908-4</doi><orcidid>https://orcid.org/0000-0003-0183-6726</orcidid><orcidid>https://orcid.org/0000-0002-9071-5063</orcidid><orcidid>https://orcid.org/0000-0002-6800-5954</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2022-06, Vol.187 (3), Article 31
issn 0022-4715
1572-9613
language eng
recordid cdi_hal_primary_oai_HAL_hal_03379780v1
source SpringerLink Journals
subjects Algorithms
Analysis
Boundary conditions
Condensed Matter
Markov chains
Markov processes
Mathematical and Computational Physics
Parameters
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Mechanics
Statistical Physics and Dynamical Systems
Theoretical
title Sparse Hard-Disk Packings and Local Markov Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Hard-Disk%20Packings%20and%20Local%20Markov%20Chains&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=H%C3%B6llmer,%20Philipp&rft.date=2022-06-01&rft.volume=187&rft.issue=3&rft.artnum=31&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-022-02908-4&rft_dat=%3Cgale_hal_p%3EA701332880%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653562556&rft_id=info:pmid/&rft_galeid=A701332880&rfr_iscdi=true