Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor
We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse sing...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2021-07, Vol.104 (1), Article 013515 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review. A |
container_volume | 104 |
creator | Azam, Pierre Fusaro, Adrien Fontaine, Quentin Garnier, Josselin Bramati, Alberto Picozzi, Antonio Kaiser, Robin Glorieux, Quentin Bienaimé, Tom |
description | We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown. |
doi_str_mv | 10.1103/PhysRevA.104.013515 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03375392v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03375392v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYKXrL9jF1x3S2ZZjx8fSfXRQ2BjbbRAcx2483DjEaaH_fintepJ49EiIF6F7SuaUEnj8aA7p0-4Xc0r4nFDIaX6FJowLlSkF_PrSM3GLZin9EkJorpQAMUE_Tz4l3-nBxzazbaNbY2tsYgi6SxYn3252Qfd-OODosMZtbEM0OmAXdr4-suA3zYB9Ow6bOGA9xK03eK-72N-hG6dDsrNznaLvl-ev5Spbv7--LRfrzAArhsxKAFoZw5ksKi0dzV09fsgo47ISjFfALePGiTxXlI6SKjRT0oGoiSqkgil6ON1tdCi73m91fyij9uVqsS6PjADIHBTb09GFk2v6mFJv3WWBkvKYZ_mf5wh4ecoT_gCjlWl0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</title><source>American Physical Society Journals</source><creator>Azam, Pierre ; Fusaro, Adrien ; Fontaine, Quentin ; Garnier, Josselin ; Bramati, Alberto ; Picozzi, Antonio ; Kaiser, Robin ; Glorieux, Quentin ; Bienaimé, Tom</creator><creatorcontrib>Azam, Pierre ; Fusaro, Adrien ; Fontaine, Quentin ; Garnier, Josselin ; Bramati, Alberto ; Picozzi, Antonio ; Kaiser, Robin ; Glorieux, Quentin ; Bienaimé, Tom</creatorcontrib><description>We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.104.013515</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Optics ; Physics</subject><ispartof>Physical review. A, 2021-07, Vol.104 (1), Article 013515</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</citedby><cites>FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</cites><orcidid>0000-0002-0672-5788 ; 0000-0002-3518-4159 ; 0000-0001-5194-3680 ; 0000-0003-0903-0233 ; 0000-0002-8554-4036 ; 0000-0001-6679-7049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03375392$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Azam, Pierre</creatorcontrib><creatorcontrib>Fusaro, Adrien</creatorcontrib><creatorcontrib>Fontaine, Quentin</creatorcontrib><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Bramati, Alberto</creatorcontrib><creatorcontrib>Picozzi, Antonio</creatorcontrib><creatorcontrib>Kaiser, Robin</creatorcontrib><creatorcontrib>Glorieux, Quentin</creatorcontrib><creatorcontrib>Bienaimé, Tom</creatorcontrib><title>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</title><title>Physical review. A</title><description>We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.</description><subject>Optics</subject><subject>Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwzAMhs3YYKXrL9jF1x3S2ZZjx8fSfXRQ2BjbbRAcx2483DjEaaH_fintepJ49EiIF6F7SuaUEnj8aA7p0-4Xc0r4nFDIaX6FJowLlSkF_PrSM3GLZin9EkJorpQAMUE_Tz4l3-nBxzazbaNbY2tsYgi6SxYn3252Qfd-OODosMZtbEM0OmAXdr4-suA3zYB9Ow6bOGA9xK03eK-72N-hG6dDsrNznaLvl-ev5Spbv7--LRfrzAArhsxKAFoZw5ksKi0dzV09fsgo47ISjFfALePGiTxXlI6SKjRT0oGoiSqkgil6ON1tdCi73m91fyij9uVqsS6PjADIHBTb09GFk2v6mFJv3WWBkvKYZ_mf5wh4ecoT_gCjlWl0</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Azam, Pierre</creator><creator>Fusaro, Adrien</creator><creator>Fontaine, Quentin</creator><creator>Garnier, Josselin</creator><creator>Bramati, Alberto</creator><creator>Picozzi, Antonio</creator><creator>Kaiser, Robin</creator><creator>Glorieux, Quentin</creator><creator>Bienaimé, Tom</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0672-5788</orcidid><orcidid>https://orcid.org/0000-0002-3518-4159</orcidid><orcidid>https://orcid.org/0000-0001-5194-3680</orcidid><orcidid>https://orcid.org/0000-0003-0903-0233</orcidid><orcidid>https://orcid.org/0000-0002-8554-4036</orcidid><orcidid>https://orcid.org/0000-0001-6679-7049</orcidid></search><sort><creationdate>20210701</creationdate><title>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</title><author>Azam, Pierre ; Fusaro, Adrien ; Fontaine, Quentin ; Garnier, Josselin ; Bramati, Alberto ; Picozzi, Antonio ; Kaiser, Robin ; Glorieux, Quentin ; Bienaimé, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azam, Pierre</creatorcontrib><creatorcontrib>Fusaro, Adrien</creatorcontrib><creatorcontrib>Fontaine, Quentin</creatorcontrib><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Bramati, Alberto</creatorcontrib><creatorcontrib>Picozzi, Antonio</creatorcontrib><creatorcontrib>Kaiser, Robin</creatorcontrib><creatorcontrib>Glorieux, Quentin</creatorcontrib><creatorcontrib>Bienaimé, Tom</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azam, Pierre</au><au>Fusaro, Adrien</au><au>Fontaine, Quentin</au><au>Garnier, Josselin</au><au>Bramati, Alberto</au><au>Picozzi, Antonio</au><au>Kaiser, Robin</au><au>Glorieux, Quentin</au><au>Bienaimé, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</atitle><jtitle>Physical review. A</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><artnum>013515</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.104.013515</doi><orcidid>https://orcid.org/0000-0002-0672-5788</orcidid><orcidid>https://orcid.org/0000-0002-3518-4159</orcidid><orcidid>https://orcid.org/0000-0001-5194-3680</orcidid><orcidid>https://orcid.org/0000-0003-0903-0233</orcidid><orcidid>https://orcid.org/0000-0002-8554-4036</orcidid><orcidid>https://orcid.org/0000-0001-6679-7049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2021-07, Vol.104 (1), Article 013515 |
issn | 2469-9926 2469-9934 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03375392v1 |
source | American Physical Society Journals |
subjects | Optics Physics |
title | Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation-enhanced%20collapse%20singularity%20of%20a%20nonlocal%20fluid%20of%20light%20in%20a%20hot%20atomic%20vapor&rft.jtitle=Physical%20review.%20A&rft.au=Azam,%20Pierre&rft.date=2021-07-01&rft.volume=104&rft.issue=1&rft.artnum=013515&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.104.013515&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03375392v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |