Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor

We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2021-07, Vol.104 (1), Article 013515
Hauptverfasser: Azam, Pierre, Fusaro, Adrien, Fontaine, Quentin, Garnier, Josselin, Bramati, Alberto, Picozzi, Antonio, Kaiser, Robin, Glorieux, Quentin, Bienaimé, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. A
container_volume 104
creator Azam, Pierre
Fusaro, Adrien
Fontaine, Quentin
Garnier, Josselin
Bramati, Alberto
Picozzi, Antonio
Kaiser, Robin
Glorieux, Quentin
Bienaimé, Tom
description We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.
doi_str_mv 10.1103/PhysRevA.104.013515
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03375392v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03375392v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYKXrL9jF1x3S2ZZjx8fSfXRQ2BjbbRAcx2483DjEaaH_fintepJ49EiIF6F7SuaUEnj8aA7p0-4Xc0r4nFDIaX6FJowLlSkF_PrSM3GLZin9EkJorpQAMUE_Tz4l3-nBxzazbaNbY2tsYgi6SxYn3252Qfd-OODosMZtbEM0OmAXdr4-suA3zYB9Ow6bOGA9xK03eK-72N-hG6dDsrNznaLvl-ev5Spbv7--LRfrzAArhsxKAFoZw5ksKi0dzV09fsgo47ISjFfALePGiTxXlI6SKjRT0oGoiSqkgil6ON1tdCi73m91fyij9uVqsS6PjADIHBTb09GFk2v6mFJv3WWBkvKYZ_mf5wh4ecoT_gCjlWl0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</title><source>American Physical Society Journals</source><creator>Azam, Pierre ; Fusaro, Adrien ; Fontaine, Quentin ; Garnier, Josselin ; Bramati, Alberto ; Picozzi, Antonio ; Kaiser, Robin ; Glorieux, Quentin ; Bienaimé, Tom</creator><creatorcontrib>Azam, Pierre ; Fusaro, Adrien ; Fontaine, Quentin ; Garnier, Josselin ; Bramati, Alberto ; Picozzi, Antonio ; Kaiser, Robin ; Glorieux, Quentin ; Bienaimé, Tom</creatorcontrib><description>We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.104.013515</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Optics ; Physics</subject><ispartof>Physical review. A, 2021-07, Vol.104 (1), Article 013515</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</citedby><cites>FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</cites><orcidid>0000-0002-0672-5788 ; 0000-0002-3518-4159 ; 0000-0001-5194-3680 ; 0000-0003-0903-0233 ; 0000-0002-8554-4036 ; 0000-0001-6679-7049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03375392$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Azam, Pierre</creatorcontrib><creatorcontrib>Fusaro, Adrien</creatorcontrib><creatorcontrib>Fontaine, Quentin</creatorcontrib><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Bramati, Alberto</creatorcontrib><creatorcontrib>Picozzi, Antonio</creatorcontrib><creatorcontrib>Kaiser, Robin</creatorcontrib><creatorcontrib>Glorieux, Quentin</creatorcontrib><creatorcontrib>Bienaimé, Tom</creatorcontrib><title>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</title><title>Physical review. A</title><description>We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.</description><subject>Optics</subject><subject>Physics</subject><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwzAMhs3YYKXrL9jF1x3S2ZZjx8fSfXRQ2BjbbRAcx2483DjEaaH_fintepJ49EiIF6F7SuaUEnj8aA7p0-4Xc0r4nFDIaX6FJowLlSkF_PrSM3GLZin9EkJorpQAMUE_Tz4l3-nBxzazbaNbY2tsYgi6SxYn3252Qfd-OODosMZtbEM0OmAXdr4-suA3zYB9Ow6bOGA9xK03eK-72N-hG6dDsrNznaLvl-ev5Spbv7--LRfrzAArhsxKAFoZw5ksKi0dzV09fsgo47ISjFfALePGiTxXlI6SKjRT0oGoiSqkgil6ON1tdCi73m91fyij9uVqsS6PjADIHBTb09GFk2v6mFJv3WWBkvKYZ_mf5wh4ecoT_gCjlWl0</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Azam, Pierre</creator><creator>Fusaro, Adrien</creator><creator>Fontaine, Quentin</creator><creator>Garnier, Josselin</creator><creator>Bramati, Alberto</creator><creator>Picozzi, Antonio</creator><creator>Kaiser, Robin</creator><creator>Glorieux, Quentin</creator><creator>Bienaimé, Tom</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0672-5788</orcidid><orcidid>https://orcid.org/0000-0002-3518-4159</orcidid><orcidid>https://orcid.org/0000-0001-5194-3680</orcidid><orcidid>https://orcid.org/0000-0003-0903-0233</orcidid><orcidid>https://orcid.org/0000-0002-8554-4036</orcidid><orcidid>https://orcid.org/0000-0001-6679-7049</orcidid></search><sort><creationdate>20210701</creationdate><title>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</title><author>Azam, Pierre ; Fusaro, Adrien ; Fontaine, Quentin ; Garnier, Josselin ; Bramati, Alberto ; Picozzi, Antonio ; Kaiser, Robin ; Glorieux, Quentin ; Bienaimé, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-e7331bcc4278ba7f15fd01521247b624b34e24cf65591127898a297f36d098793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azam, Pierre</creatorcontrib><creatorcontrib>Fusaro, Adrien</creatorcontrib><creatorcontrib>Fontaine, Quentin</creatorcontrib><creatorcontrib>Garnier, Josselin</creatorcontrib><creatorcontrib>Bramati, Alberto</creatorcontrib><creatorcontrib>Picozzi, Antonio</creatorcontrib><creatorcontrib>Kaiser, Robin</creatorcontrib><creatorcontrib>Glorieux, Quentin</creatorcontrib><creatorcontrib>Bienaimé, Tom</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azam, Pierre</au><au>Fusaro, Adrien</au><au>Fontaine, Quentin</au><au>Garnier, Josselin</au><au>Bramati, Alberto</au><au>Picozzi, Antonio</au><au>Kaiser, Robin</au><au>Glorieux, Quentin</au><au>Bienaimé, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor</atitle><jtitle>Physical review. A</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><artnum>013515</artnum><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity, as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction has not been observed in an atomic vapor so far and its microscopic origin is currently unknown.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.104.013515</doi><orcidid>https://orcid.org/0000-0002-0672-5788</orcidid><orcidid>https://orcid.org/0000-0002-3518-4159</orcidid><orcidid>https://orcid.org/0000-0001-5194-3680</orcidid><orcidid>https://orcid.org/0000-0003-0903-0233</orcidid><orcidid>https://orcid.org/0000-0002-8554-4036</orcidid><orcidid>https://orcid.org/0000-0001-6679-7049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2021-07, Vol.104 (1), Article 013515
issn 2469-9926
2469-9934
language eng
recordid cdi_hal_primary_oai_HAL_hal_03375392v1
source American Physical Society Journals
subjects Optics
Physics
title Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation-enhanced%20collapse%20singularity%20of%20a%20nonlocal%20fluid%20of%20light%20in%20a%20hot%20atomic%20vapor&rft.jtitle=Physical%20review.%20A&rft.au=Azam,%20Pierre&rft.date=2021-07-01&rft.volume=104&rft.issue=1&rft.artnum=013515&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.104.013515&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03375392v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true