Identification of spatiotemporal dispersion electrograms in atrial fibrillation ablation using machine learning: A comparative study

•A new patient-tailored ablation protocol using multipole catheters has been proposed.•Visual inspection of spatiotemporal dispersion patterns lacks reproducibility.•Machine learning models for automatic classification of electrograms are benchmarked.•The decision-aid solution can work in real time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control 2022-02, Vol.72, p.103269, Article 103269
Hauptverfasser: Ghrissi, Amina, Almonfrey, Douglas, Squara, Fabien, Montagnat, Johan, Zarzoso, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103269
container_title Biomedical signal processing and control
container_volume 72
creator Ghrissi, Amina
Almonfrey, Douglas
Squara, Fabien
Montagnat, Johan
Zarzoso, Vicente
description •A new patient-tailored ablation protocol using multipole catheters has been proposed.•Visual inspection of spatiotemporal dispersion patterns lacks reproducibility.•Machine learning models for automatic classification of electrograms are benchmarked.•The decision-aid solution can work in real time with moderate computational resources.•The solution can improve catheter ablation efficacy, while reducing duration and cost. Atrial Fibrillation (AF) is the most widespread sustained arrhythmia in clinical practice. A recent personalized AF therapy consists in ablating areas displaying spatiotemporal dispersion (STD) electrograms (EGM) with the use of catheters. Interventional cardiologists use a multipolar mapping catheter called PentaRay to identify visually atrial sites with STD pattern by visual inspection. In this contribution, we propose to automatize the identification of STD EGMs using machine learning while comparing several features. The aim is to design a data representation and an adapted classification algorithm for accurate STD detection with affordable computational resources and low prediction time. Four data formats are considered: 1) EGM matrices; 2) EGM plots; 3) three-dimensional EGM plots; 4) maximal voltage absolute values. Convolutional neural networks and transfer learning based on the VGG16 architecture are benchmarked. Classification results on the test set show that extracting features automatically with VGG16 is possible and yields comparable results to classifying raw EGM recordings with values of accuracy and AUC of 90%. However, the overall precision and F1 score are low (50%), which can be explained by the high class imbalance ratio. This issue is addressed with data augmentation. Due to its low computational cost, our solution can also be deployed in real time.
doi_str_mv 10.1016/j.bspc.2021.103269
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03373043v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1746809421008661</els_id><sourcerecordid>oai_HAL_hal_03373043v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-1acbabbcf301988da82ab510b4bd6bd77cec1213316b1c6e35942af2d2a149073</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzj5yqHFa7t5IC5VBbRSJS5wttaPtK6SOLLTSr3zw0kU4MhpR7MzK-2XJPdA50AhfTzMVWz1nFEGvcFZWlwkE8hEOsuB5pe_mhbiOrmJ8UCpyDMQk-RrY2zTudJp7JxviC9JbAfZ2br1AStiXGxtiMPSVlZ3we8C1pG4hmAXXJ8onQquqsYDqH7EMbpmR2rUe9dYUlkMTW88kSXRvm4x9KmTJbE7mvNtclViFe3dz5wmn68vH6v1bPv-tlkttzPNWdHNALVCpXTJKRR5bjBnqBZAlVAmVSbLtNXAgHNIFejU8kUhGJbMMARR0IxPk4fx7h4r2QZXYzhLj06ul1s5eJTzjFPBT9Bn2ZjVwccYbPlXACoH5vIgB-ZyYC5H5n3peSzZ_ouTs0FG7WyjrXGhRyeNd__VvwH5HY4T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of spatiotemporal dispersion electrograms in atrial fibrillation ablation using machine learning: A comparative study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ghrissi, Amina ; Almonfrey, Douglas ; Squara, Fabien ; Montagnat, Johan ; Zarzoso, Vicente</creator><creatorcontrib>Ghrissi, Amina ; Almonfrey, Douglas ; Squara, Fabien ; Montagnat, Johan ; Zarzoso, Vicente</creatorcontrib><description>•A new patient-tailored ablation protocol using multipole catheters has been proposed.•Visual inspection of spatiotemporal dispersion patterns lacks reproducibility.•Machine learning models for automatic classification of electrograms are benchmarked.•The decision-aid solution can work in real time with moderate computational resources.•The solution can improve catheter ablation efficacy, while reducing duration and cost. Atrial Fibrillation (AF) is the most widespread sustained arrhythmia in clinical practice. A recent personalized AF therapy consists in ablating areas displaying spatiotemporal dispersion (STD) electrograms (EGM) with the use of catheters. Interventional cardiologists use a multipolar mapping catheter called PentaRay to identify visually atrial sites with STD pattern by visual inspection. In this contribution, we propose to automatize the identification of STD EGMs using machine learning while comparing several features. The aim is to design a data representation and an adapted classification algorithm for accurate STD detection with affordable computational resources and low prediction time. Four data formats are considered: 1) EGM matrices; 2) EGM plots; 3) three-dimensional EGM plots; 4) maximal voltage absolute values. Convolutional neural networks and transfer learning based on the VGG16 architecture are benchmarked. Classification results on the test set show that extracting features automatically with VGG16 is possible and yields comparable results to classifying raw EGM recordings with values of accuracy and AUC of 90%. However, the overall precision and F1 score are low (50%), which can be explained by the high class imbalance ratio. This issue is addressed with data augmentation. Due to its low computational cost, our solution can also be deployed in real time.</description><identifier>ISSN: 1746-8094</identifier><identifier>EISSN: 1746-8108</identifier><identifier>DOI: 10.1016/j.bspc.2021.103269</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Atrial fibrillation ; Bioengineering ; Cardiology and cardiovascular system ; Catheter ablation ; Computer Science ; Human health and pathology ; Life Sciences ; Machine Learning ; Multichannel electrogram ; Multipole catheter ; Signal and Image Processing ; Spatiotemporal dispersion ; Transfer learning</subject><ispartof>Biomedical signal processing and control, 2022-02, Vol.72, p.103269, Article 103269</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-1acbabbcf301988da82ab510b4bd6bd77cec1213316b1c6e35942af2d2a149073</cites><orcidid>0000-0001-5558-0514 ; 0000-0001-9286-1163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1746809421008661$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03373043$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghrissi, Amina</creatorcontrib><creatorcontrib>Almonfrey, Douglas</creatorcontrib><creatorcontrib>Squara, Fabien</creatorcontrib><creatorcontrib>Montagnat, Johan</creatorcontrib><creatorcontrib>Zarzoso, Vicente</creatorcontrib><title>Identification of spatiotemporal dispersion electrograms in atrial fibrillation ablation using machine learning: A comparative study</title><title>Biomedical signal processing and control</title><description>•A new patient-tailored ablation protocol using multipole catheters has been proposed.•Visual inspection of spatiotemporal dispersion patterns lacks reproducibility.•Machine learning models for automatic classification of electrograms are benchmarked.•The decision-aid solution can work in real time with moderate computational resources.•The solution can improve catheter ablation efficacy, while reducing duration and cost. Atrial Fibrillation (AF) is the most widespread sustained arrhythmia in clinical practice. A recent personalized AF therapy consists in ablating areas displaying spatiotemporal dispersion (STD) electrograms (EGM) with the use of catheters. Interventional cardiologists use a multipolar mapping catheter called PentaRay to identify visually atrial sites with STD pattern by visual inspection. In this contribution, we propose to automatize the identification of STD EGMs using machine learning while comparing several features. The aim is to design a data representation and an adapted classification algorithm for accurate STD detection with affordable computational resources and low prediction time. Four data formats are considered: 1) EGM matrices; 2) EGM plots; 3) three-dimensional EGM plots; 4) maximal voltage absolute values. Convolutional neural networks and transfer learning based on the VGG16 architecture are benchmarked. Classification results on the test set show that extracting features automatically with VGG16 is possible and yields comparable results to classifying raw EGM recordings with values of accuracy and AUC of 90%. However, the overall precision and F1 score are low (50%), which can be explained by the high class imbalance ratio. This issue is addressed with data augmentation. Due to its low computational cost, our solution can also be deployed in real time.</description><subject>Atrial fibrillation</subject><subject>Bioengineering</subject><subject>Cardiology and cardiovascular system</subject><subject>Catheter ablation</subject><subject>Computer Science</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Multichannel electrogram</subject><subject>Multipole catheter</subject><subject>Signal and Image Processing</subject><subject>Spatiotemporal dispersion</subject><subject>Transfer learning</subject><issn>1746-8094</issn><issn>1746-8108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwBzj5yqHFa7t5IC5VBbRSJS5wttaPtK6SOLLTSr3zw0kU4MhpR7MzK-2XJPdA50AhfTzMVWz1nFEGvcFZWlwkE8hEOsuB5pe_mhbiOrmJ8UCpyDMQk-RrY2zTudJp7JxviC9JbAfZ2br1AStiXGxtiMPSVlZ3we8C1pG4hmAXXJ8onQquqsYDqH7EMbpmR2rUe9dYUlkMTW88kSXRvm4x9KmTJbE7mvNtclViFe3dz5wmn68vH6v1bPv-tlkttzPNWdHNALVCpXTJKRR5bjBnqBZAlVAmVSbLtNXAgHNIFejU8kUhGJbMMARR0IxPk4fx7h4r2QZXYzhLj06ul1s5eJTzjFPBT9Bn2ZjVwccYbPlXACoH5vIgB-ZyYC5H5n3peSzZ_ouTs0FG7WyjrXGhRyeNd__VvwH5HY4T</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ghrissi, Amina</creator><creator>Almonfrey, Douglas</creator><creator>Squara, Fabien</creator><creator>Montagnat, Johan</creator><creator>Zarzoso, Vicente</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5558-0514</orcidid><orcidid>https://orcid.org/0000-0001-9286-1163</orcidid></search><sort><creationdate>20220201</creationdate><title>Identification of spatiotemporal dispersion electrograms in atrial fibrillation ablation using machine learning: A comparative study</title><author>Ghrissi, Amina ; Almonfrey, Douglas ; Squara, Fabien ; Montagnat, Johan ; Zarzoso, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-1acbabbcf301988da82ab510b4bd6bd77cec1213316b1c6e35942af2d2a149073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atrial fibrillation</topic><topic>Bioengineering</topic><topic>Cardiology and cardiovascular system</topic><topic>Catheter ablation</topic><topic>Computer Science</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Multichannel electrogram</topic><topic>Multipole catheter</topic><topic>Signal and Image Processing</topic><topic>Spatiotemporal dispersion</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghrissi, Amina</creatorcontrib><creatorcontrib>Almonfrey, Douglas</creatorcontrib><creatorcontrib>Squara, Fabien</creatorcontrib><creatorcontrib>Montagnat, Johan</creatorcontrib><creatorcontrib>Zarzoso, Vicente</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biomedical signal processing and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghrissi, Amina</au><au>Almonfrey, Douglas</au><au>Squara, Fabien</au><au>Montagnat, Johan</au><au>Zarzoso, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of spatiotemporal dispersion electrograms in atrial fibrillation ablation using machine learning: A comparative study</atitle><jtitle>Biomedical signal processing and control</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>72</volume><spage>103269</spage><pages>103269-</pages><artnum>103269</artnum><issn>1746-8094</issn><eissn>1746-8108</eissn><abstract>•A new patient-tailored ablation protocol using multipole catheters has been proposed.•Visual inspection of spatiotemporal dispersion patterns lacks reproducibility.•Machine learning models for automatic classification of electrograms are benchmarked.•The decision-aid solution can work in real time with moderate computational resources.•The solution can improve catheter ablation efficacy, while reducing duration and cost. Atrial Fibrillation (AF) is the most widespread sustained arrhythmia in clinical practice. A recent personalized AF therapy consists in ablating areas displaying spatiotemporal dispersion (STD) electrograms (EGM) with the use of catheters. Interventional cardiologists use a multipolar mapping catheter called PentaRay to identify visually atrial sites with STD pattern by visual inspection. In this contribution, we propose to automatize the identification of STD EGMs using machine learning while comparing several features. The aim is to design a data representation and an adapted classification algorithm for accurate STD detection with affordable computational resources and low prediction time. Four data formats are considered: 1) EGM matrices; 2) EGM plots; 3) three-dimensional EGM plots; 4) maximal voltage absolute values. Convolutional neural networks and transfer learning based on the VGG16 architecture are benchmarked. Classification results on the test set show that extracting features automatically with VGG16 is possible and yields comparable results to classifying raw EGM recordings with values of accuracy and AUC of 90%. However, the overall precision and F1 score are low (50%), which can be explained by the high class imbalance ratio. This issue is addressed with data augmentation. Due to its low computational cost, our solution can also be deployed in real time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.bspc.2021.103269</doi><orcidid>https://orcid.org/0000-0001-5558-0514</orcidid><orcidid>https://orcid.org/0000-0001-9286-1163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-8094
ispartof Biomedical signal processing and control, 2022-02, Vol.72, p.103269, Article 103269
issn 1746-8094
1746-8108
language eng
recordid cdi_hal_primary_oai_HAL_hal_03373043v1
source Elsevier ScienceDirect Journals Complete
subjects Atrial fibrillation
Bioengineering
Cardiology and cardiovascular system
Catheter ablation
Computer Science
Human health and pathology
Life Sciences
Machine Learning
Multichannel electrogram
Multipole catheter
Signal and Image Processing
Spatiotemporal dispersion
Transfer learning
title Identification of spatiotemporal dispersion electrograms in atrial fibrillation ablation using machine learning: A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20spatiotemporal%20dispersion%20electrograms%20in%20atrial%20fibrillation%20ablation%20using%20machine%20learning:%20A%20comparative%20study&rft.jtitle=Biomedical%20signal%20processing%20and%20control&rft.au=Ghrissi,%20Amina&rft.date=2022-02-01&rft.volume=72&rft.spage=103269&rft.pages=103269-&rft.artnum=103269&rft.issn=1746-8094&rft.eissn=1746-8108&rft_id=info:doi/10.1016/j.bspc.2021.103269&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03373043v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1746809421008661&rfr_iscdi=true