Wave‐based SHM of sandwich structures using cross‐sectional waves
Summary The identification of structural damage in composite waveguides is a critical issue in aerospace and transportation industries. Frequently, these structures involve periodic patterns or dissipative components that considerably reduce the range, robustness, and available bandwidth of ultrason...
Gespeichert in:
Veröffentlicht in: | Structural control and health monitoring 2018-02, Vol.25 (2), p.e2085-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2085 |
container_title | Structural control and health monitoring |
container_volume | 25 |
creator | Droz, Christophe Bareille, Olivier Lainé, Jean‐Pierre Ichchou, Mohamed N. |
description | Summary
The identification of structural damage in composite waveguides is a critical issue in aerospace and transportation industries. Frequently, these structures involve periodic patterns or dissipative components that considerably reduce the range, robustness, and available bandwidth of ultrasonic structural health monitoring techniques. On the other hand, wave‐based methods provide more accurate information on a defect's type, size, and location than modal analysis techniques. This paper focuses on a low‐frequency wave‐based method for structural integrity assessment of complex waveguides. The wave finite element method is employed to compute the dispersion curves of non‐standard cross‐sectional waves exhibiting increased strain energy. The spectral results are used to analyse the diffusion of guided elastic waves through representative localized defects in a laminated sandwich panel. To validate the diffusion model, reflection and transmission coefficients are determined for several wave pulses on typical defects using time‐domain virtual experiments and cross‐sectional energy acquisition. Results demonstrate that using cross‐sectional waves provides a sensitivity to damage up to 2.8× higher than flexural waves in the low‐frequency range. These results are explained by the presence of local resonances within the cross section, producing wavelengths in the transverse direction of propagation. These waves may prove suitable for cost‐effective structural health monitoring applications because they can travel long distances through heterogeneous and periodic structures. |
doi_str_mv | 10.1002/stc.2085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03372990v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986581532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3615-9bc298b7097f70f310264ea30b087de36e7e07c0e9b0353950ca540aaaa69bc13</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4p-BEKXvTQ-ZIsbXMcYzph4mETjyHNUtdR15nXruzmR_Az-klMV9nNXBLC7z3e-xNyTWFAAdg9VmbAIBEnpEfFUISMRfz0-BbinFwgrr2MWCJ6ZPKmd_bn6zvVaJfBfPoclFmAerNscrMKsHK1qWpnMagx37wHxpWInqM1VV5udBE0vh4vyVmmC7RXf3efvD5MFuNpOHt5fBqPZqHhERWhTA2TSRqDjLMYMk79FEOrOaSQxEvLIxtbiA1YmQIXXAowWgxB-xP5Wsr75K7ru9KF2rr8Q7u9KnWupqOZav-A85hJCbvW3nR268rP2mKl1mXt_MioqEwikVDBmVe3nTps5mx2bEtBtYEqH6hqA_U07GiTF3b_r1PzxfjgfwGoOHb8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986581532</pqid></control><display><type>article</type><title>Wave‐based SHM of sandwich structures using cross‐sectional waves</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Droz, Christophe ; Bareille, Olivier ; Lainé, Jean‐Pierre ; Ichchou, Mohamed N.</creator><creatorcontrib>Droz, Christophe ; Bareille, Olivier ; Lainé, Jean‐Pierre ; Ichchou, Mohamed N.</creatorcontrib><description>Summary
The identification of structural damage in composite waveguides is a critical issue in aerospace and transportation industries. Frequently, these structures involve periodic patterns or dissipative components that considerably reduce the range, robustness, and available bandwidth of ultrasonic structural health monitoring techniques. On the other hand, wave‐based methods provide more accurate information on a defect's type, size, and location than modal analysis techniques. This paper focuses on a low‐frequency wave‐based method for structural integrity assessment of complex waveguides. The wave finite element method is employed to compute the dispersion curves of non‐standard cross‐sectional waves exhibiting increased strain energy. The spectral results are used to analyse the diffusion of guided elastic waves through representative localized defects in a laminated sandwich panel. To validate the diffusion model, reflection and transmission coefficients are determined for several wave pulses on typical defects using time‐domain virtual experiments and cross‐sectional energy acquisition. Results demonstrate that using cross‐sectional waves provides a sensitivity to damage up to 2.8× higher than flexural waves in the low‐frequency range. These results are explained by the presence of local resonances within the cross section, producing wavelengths in the transverse direction of propagation. These waves may prove suitable for cost‐effective structural health monitoring applications because they can travel long distances through heterogeneous and periodic structures.</description><identifier>ISSN: 1545-2255</identifier><identifier>EISSN: 1545-2263</identifier><identifier>DOI: 10.1002/stc.2085</identifier><language>eng</language><publisher>Pavia: Wiley Subscription Services, Inc</publisher><subject>Aerospace industry ; Civil Engineering ; composite ; Cross-sections ; damage ; Damage detection ; Defects ; Elastic waves ; Engineering Sciences ; Finite element method ; guided mode ; low‐frequency ; Mechanics ; monitoring ; periodic ; Periodic structures ; Sandwich panels ; Sandwich structures ; Structural damage ; Structural health monitoring ; Structural integrity ; Transportation industry ; Wave dispersion ; Wave propagation ; Waveguides ; Wavelengths</subject><ispartof>Structural control and health monitoring, 2018-02, Vol.25 (2), p.e2085-n/a</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3615-9bc298b7097f70f310264ea30b087de36e7e07c0e9b0353950ca540aaaa69bc13</citedby><cites>FETCH-LOGICAL-c3615-9bc298b7097f70f310264ea30b087de36e7e07c0e9b0353950ca540aaaa69bc13</cites><orcidid>0000-0003-3386-6452 ; 0000-0002-2452-0831 ; 0000-0001-7716-5039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fstc.2085$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fstc.2085$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03372990$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Droz, Christophe</creatorcontrib><creatorcontrib>Bareille, Olivier</creatorcontrib><creatorcontrib>Lainé, Jean‐Pierre</creatorcontrib><creatorcontrib>Ichchou, Mohamed N.</creatorcontrib><title>Wave‐based SHM of sandwich structures using cross‐sectional waves</title><title>Structural control and health monitoring</title><description>Summary
The identification of structural damage in composite waveguides is a critical issue in aerospace and transportation industries. Frequently, these structures involve periodic patterns or dissipative components that considerably reduce the range, robustness, and available bandwidth of ultrasonic structural health monitoring techniques. On the other hand, wave‐based methods provide more accurate information on a defect's type, size, and location than modal analysis techniques. This paper focuses on a low‐frequency wave‐based method for structural integrity assessment of complex waveguides. The wave finite element method is employed to compute the dispersion curves of non‐standard cross‐sectional waves exhibiting increased strain energy. The spectral results are used to analyse the diffusion of guided elastic waves through representative localized defects in a laminated sandwich panel. To validate the diffusion model, reflection and transmission coefficients are determined for several wave pulses on typical defects using time‐domain virtual experiments and cross‐sectional energy acquisition. Results demonstrate that using cross‐sectional waves provides a sensitivity to damage up to 2.8× higher than flexural waves in the low‐frequency range. These results are explained by the presence of local resonances within the cross section, producing wavelengths in the transverse direction of propagation. These waves may prove suitable for cost‐effective structural health monitoring applications because they can travel long distances through heterogeneous and periodic structures.</description><subject>Aerospace industry</subject><subject>Civil Engineering</subject><subject>composite</subject><subject>Cross-sections</subject><subject>damage</subject><subject>Damage detection</subject><subject>Defects</subject><subject>Elastic waves</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>guided mode</subject><subject>low‐frequency</subject><subject>Mechanics</subject><subject>monitoring</subject><subject>periodic</subject><subject>Periodic structures</subject><subject>Sandwich panels</subject><subject>Sandwich structures</subject><subject>Structural damage</subject><subject>Structural health monitoring</subject><subject>Structural integrity</subject><subject>Transportation industry</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><subject>Waveguides</subject><subject>Wavelengths</subject><issn>1545-2255</issn><issn>1545-2263</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4p-BEKXvTQ-ZIsbXMcYzph4mETjyHNUtdR15nXruzmR_Az-klMV9nNXBLC7z3e-xNyTWFAAdg9VmbAIBEnpEfFUISMRfz0-BbinFwgrr2MWCJ6ZPKmd_bn6zvVaJfBfPoclFmAerNscrMKsHK1qWpnMagx37wHxpWInqM1VV5udBE0vh4vyVmmC7RXf3efvD5MFuNpOHt5fBqPZqHhERWhTA2TSRqDjLMYMk79FEOrOaSQxEvLIxtbiA1YmQIXXAowWgxB-xP5Wsr75K7ru9KF2rr8Q7u9KnWupqOZav-A85hJCbvW3nR268rP2mKl1mXt_MioqEwikVDBmVe3nTps5mx2bEtBtYEqH6hqA_U07GiTF3b_r1PzxfjgfwGoOHb8</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Droz, Christophe</creator><creator>Bareille, Olivier</creator><creator>Lainé, Jean‐Pierre</creator><creator>Ichchou, Mohamed N.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3386-6452</orcidid><orcidid>https://orcid.org/0000-0002-2452-0831</orcidid><orcidid>https://orcid.org/0000-0001-7716-5039</orcidid></search><sort><creationdate>201802</creationdate><title>Wave‐based SHM of sandwich structures using cross‐sectional waves</title><author>Droz, Christophe ; Bareille, Olivier ; Lainé, Jean‐Pierre ; Ichchou, Mohamed N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3615-9bc298b7097f70f310264ea30b087de36e7e07c0e9b0353950ca540aaaa69bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace industry</topic><topic>Civil Engineering</topic><topic>composite</topic><topic>Cross-sections</topic><topic>damage</topic><topic>Damage detection</topic><topic>Defects</topic><topic>Elastic waves</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>guided mode</topic><topic>low‐frequency</topic><topic>Mechanics</topic><topic>monitoring</topic><topic>periodic</topic><topic>Periodic structures</topic><topic>Sandwich panels</topic><topic>Sandwich structures</topic><topic>Structural damage</topic><topic>Structural health monitoring</topic><topic>Structural integrity</topic><topic>Transportation industry</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><topic>Waveguides</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Droz, Christophe</creatorcontrib><creatorcontrib>Bareille, Olivier</creatorcontrib><creatorcontrib>Lainé, Jean‐Pierre</creatorcontrib><creatorcontrib>Ichchou, Mohamed N.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Structural control and health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Droz, Christophe</au><au>Bareille, Olivier</au><au>Lainé, Jean‐Pierre</au><au>Ichchou, Mohamed N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave‐based SHM of sandwich structures using cross‐sectional waves</atitle><jtitle>Structural control and health monitoring</jtitle><date>2018-02</date><risdate>2018</risdate><volume>25</volume><issue>2</issue><spage>e2085</spage><epage>n/a</epage><pages>e2085-n/a</pages><issn>1545-2255</issn><eissn>1545-2263</eissn><abstract>Summary
The identification of structural damage in composite waveguides is a critical issue in aerospace and transportation industries. Frequently, these structures involve periodic patterns or dissipative components that considerably reduce the range, robustness, and available bandwidth of ultrasonic structural health monitoring techniques. On the other hand, wave‐based methods provide more accurate information on a defect's type, size, and location than modal analysis techniques. This paper focuses on a low‐frequency wave‐based method for structural integrity assessment of complex waveguides. The wave finite element method is employed to compute the dispersion curves of non‐standard cross‐sectional waves exhibiting increased strain energy. The spectral results are used to analyse the diffusion of guided elastic waves through representative localized defects in a laminated sandwich panel. To validate the diffusion model, reflection and transmission coefficients are determined for several wave pulses on typical defects using time‐domain virtual experiments and cross‐sectional energy acquisition. Results demonstrate that using cross‐sectional waves provides a sensitivity to damage up to 2.8× higher than flexural waves in the low‐frequency range. These results are explained by the presence of local resonances within the cross section, producing wavelengths in the transverse direction of propagation. These waves may prove suitable for cost‐effective structural health monitoring applications because they can travel long distances through heterogeneous and periodic structures.</abstract><cop>Pavia</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/stc.2085</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3386-6452</orcidid><orcidid>https://orcid.org/0000-0002-2452-0831</orcidid><orcidid>https://orcid.org/0000-0001-7716-5039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-2255 |
ispartof | Structural control and health monitoring, 2018-02, Vol.25 (2), p.e2085-n/a |
issn | 1545-2255 1545-2263 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03372990v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aerospace industry Civil Engineering composite Cross-sections damage Damage detection Defects Elastic waves Engineering Sciences Finite element method guided mode low‐frequency Mechanics monitoring periodic Periodic structures Sandwich panels Sandwich structures Structural damage Structural health monitoring Structural integrity Transportation industry Wave dispersion Wave propagation Waveguides Wavelengths |
title | Wave‐based SHM of sandwich structures using cross‐sectional waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%E2%80%90based%20SHM%20of%20sandwich%20structures%20using%20cross%E2%80%90sectional%20waves&rft.jtitle=Structural%20control%20and%20health%20monitoring&rft.au=Droz,%20Christophe&rft.date=2018-02&rft.volume=25&rft.issue=2&rft.spage=e2085&rft.epage=n/a&rft.pages=e2085-n/a&rft.issn=1545-2255&rft.eissn=1545-2263&rft_id=info:doi/10.1002/stc.2085&rft_dat=%3Cproquest_hal_p%3E1986581532%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986581532&rft_id=info:pmid/&rfr_iscdi=true |