Fundamental scaling laws of covert DDoS attacks
Botnets such as Mirai use insecure home devices to conduct distributed denial of service attacks on the Internet infrastructure. Although some of those attacks involve large amounts of traffic, they are generated from a large number of homes, which hampers their early detection. In this paper, our g...
Gespeichert in:
Veröffentlicht in: | Performance evaluation 2021-11, Vol.151, p.102236, Article 102236 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102236 |
container_title | Performance evaluation |
container_volume | 151 |
creator | Ramtin, Amir Reza Nain, Philippe Menasche, Daniel Sadoc Towsley, Don de Souza e Silva, Edmundo |
description | Botnets such as Mirai use insecure home devices to conduct distributed denial of service attacks on the Internet infrastructure. Although some of those attacks involve large amounts of traffic, they are generated from a large number of homes, which hampers their early detection. In this paper, our goal is to answer the following question: what is the maximum amount of damage that a DDoS attacker can produce at the network edge without being detected? To that aim, we consider a statistical hypothesis testing approach for attack detection at the network edge. The proposed system assesses the goodness of fit of traffic models based on the ratio of their likelihoods. Under such a model, we show that the amount of traffic that can be generated by a covert attacker scales according to the square root of the number of compromised homes. We evaluate and validate the theoretical results using real data collected from thousands of home-routers connected to a mid-sized ISP. |
doi_str_mv | 10.1016/j.peva.2021.102236 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03372124v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166531621000535</els_id><sourcerecordid>oai_HAL_hal_03372124v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3a055418b5ba93373c790be533c74e28f3abfb89bd8760e18a1355ec94f31913</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKdcPaTdj2x2A15Ka60Q8GAP3pbJZqJb06Tsxoj_3oSIR08zDO_zwjyE3DK6YJSly8PihD0sOOVsOHAu0jMyY1rxWCXy9ZzMhlAaS8HSS3IVwoFSKpWgM7LcfjYlHLHpoI6Chdo1b1ENXyFqq8i2Pfou2mzalwi6DuxHuCYXFdQBb37nnOy3D_v1Ls6fH5_Wqzy2QukuFkClTJguZAGZEEpYldECpRiWBLmuBBRVobOi1CqlyDQwISXaLKkEy5iYk7up9h1qc_LuCP7btODMbpWb8UaHUs540o9ZPmWtb0PwWP0BjJrRjjmY0Y4Z7ZjJzgDdTxAOT_QOvQnWYWOxdB5tZ8rW_Yf_ABe_a1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fundamental scaling laws of covert DDoS attacks</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ramtin, Amir Reza ; Nain, Philippe ; Menasche, Daniel Sadoc ; Towsley, Don ; de Souza e Silva, Edmundo</creator><creatorcontrib>Ramtin, Amir Reza ; Nain, Philippe ; Menasche, Daniel Sadoc ; Towsley, Don ; de Souza e Silva, Edmundo</creatorcontrib><description>Botnets such as Mirai use insecure home devices to conduct distributed denial of service attacks on the Internet infrastructure. Although some of those attacks involve large amounts of traffic, they are generated from a large number of homes, which hampers their early detection. In this paper, our goal is to answer the following question: what is the maximum amount of damage that a DDoS attacker can produce at the network edge without being detected? To that aim, we consider a statistical hypothesis testing approach for attack detection at the network edge. The proposed system assesses the goodness of fit of traffic models based on the ratio of their likelihoods. Under such a model, we show that the amount of traffic that can be generated by a covert attacker scales according to the square root of the number of compromised homes. We evaluate and validate the theoretical results using real data collected from thousands of home-routers connected to a mid-sized ISP.</description><identifier>ISSN: 0166-5316</identifier><identifier>EISSN: 1872-745X</identifier><identifier>DOI: 10.1016/j.peva.2021.102236</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Covertness ; DDoS attack ; Gaussian mixture ; Home networks ; Hypothesis testing ; Networking and Internet Architecture ; Scaling laws</subject><ispartof>Performance evaluation, 2021-11, Vol.151, p.102236, Article 102236</ispartof><rights>2021 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3a055418b5ba93373c790be533c74e28f3abfb89bd8760e18a1355ec94f31913</citedby><cites>FETCH-LOGICAL-c378t-3a055418b5ba93373c790be533c74e28f3abfb89bd8760e18a1355ec94f31913</cites><orcidid>0000-0002-1192-0289 ; 0000-0003-0912-7860 ; 0000-0002-3186-0842 ; 0000-0002-8953-4003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.peva.2021.102236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-03372124$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramtin, Amir Reza</creatorcontrib><creatorcontrib>Nain, Philippe</creatorcontrib><creatorcontrib>Menasche, Daniel Sadoc</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>de Souza e Silva, Edmundo</creatorcontrib><title>Fundamental scaling laws of covert DDoS attacks</title><title>Performance evaluation</title><description>Botnets such as Mirai use insecure home devices to conduct distributed denial of service attacks on the Internet infrastructure. Although some of those attacks involve large amounts of traffic, they are generated from a large number of homes, which hampers their early detection. In this paper, our goal is to answer the following question: what is the maximum amount of damage that a DDoS attacker can produce at the network edge without being detected? To that aim, we consider a statistical hypothesis testing approach for attack detection at the network edge. The proposed system assesses the goodness of fit of traffic models based on the ratio of their likelihoods. Under such a model, we show that the amount of traffic that can be generated by a covert attacker scales according to the square root of the number of compromised homes. We evaluate and validate the theoretical results using real data collected from thousands of home-routers connected to a mid-sized ISP.</description><subject>Computer Science</subject><subject>Covertness</subject><subject>DDoS attack</subject><subject>Gaussian mixture</subject><subject>Home networks</subject><subject>Hypothesis testing</subject><subject>Networking and Internet Architecture</subject><subject>Scaling laws</subject><issn>0166-5316</issn><issn>1872-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKdcPaTdj2x2A15Ka60Q8GAP3pbJZqJb06Tsxoj_3oSIR08zDO_zwjyE3DK6YJSly8PihD0sOOVsOHAu0jMyY1rxWCXy9ZzMhlAaS8HSS3IVwoFSKpWgM7LcfjYlHLHpoI6Chdo1b1ENXyFqq8i2Pfou2mzalwi6DuxHuCYXFdQBb37nnOy3D_v1Ls6fH5_Wqzy2QukuFkClTJguZAGZEEpYldECpRiWBLmuBBRVobOi1CqlyDQwISXaLKkEy5iYk7up9h1qc_LuCP7btODMbpWb8UaHUs540o9ZPmWtb0PwWP0BjJrRjjmY0Y4Z7ZjJzgDdTxAOT_QOvQnWYWOxdB5tZ8rW_Yf_ABe_a1k</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ramtin, Amir Reza</creator><creator>Nain, Philippe</creator><creator>Menasche, Daniel Sadoc</creator><creator>Towsley, Don</creator><creator>de Souza e Silva, Edmundo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1192-0289</orcidid><orcidid>https://orcid.org/0000-0003-0912-7860</orcidid><orcidid>https://orcid.org/0000-0002-3186-0842</orcidid><orcidid>https://orcid.org/0000-0002-8953-4003</orcidid></search><sort><creationdate>202111</creationdate><title>Fundamental scaling laws of covert DDoS attacks</title><author>Ramtin, Amir Reza ; Nain, Philippe ; Menasche, Daniel Sadoc ; Towsley, Don ; de Souza e Silva, Edmundo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3a055418b5ba93373c790be533c74e28f3abfb89bd8760e18a1355ec94f31913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Covertness</topic><topic>DDoS attack</topic><topic>Gaussian mixture</topic><topic>Home networks</topic><topic>Hypothesis testing</topic><topic>Networking and Internet Architecture</topic><topic>Scaling laws</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramtin, Amir Reza</creatorcontrib><creatorcontrib>Nain, Philippe</creatorcontrib><creatorcontrib>Menasche, Daniel Sadoc</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>de Souza e Silva, Edmundo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Performance evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramtin, Amir Reza</au><au>Nain, Philippe</au><au>Menasche, Daniel Sadoc</au><au>Towsley, Don</au><au>de Souza e Silva, Edmundo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental scaling laws of covert DDoS attacks</atitle><jtitle>Performance evaluation</jtitle><date>2021-11</date><risdate>2021</risdate><volume>151</volume><spage>102236</spage><pages>102236-</pages><artnum>102236</artnum><issn>0166-5316</issn><eissn>1872-745X</eissn><abstract>Botnets such as Mirai use insecure home devices to conduct distributed denial of service attacks on the Internet infrastructure. Although some of those attacks involve large amounts of traffic, they are generated from a large number of homes, which hampers their early detection. In this paper, our goal is to answer the following question: what is the maximum amount of damage that a DDoS attacker can produce at the network edge without being detected? To that aim, we consider a statistical hypothesis testing approach for attack detection at the network edge. The proposed system assesses the goodness of fit of traffic models based on the ratio of their likelihoods. Under such a model, we show that the amount of traffic that can be generated by a covert attacker scales according to the square root of the number of compromised homes. We evaluate and validate the theoretical results using real data collected from thousands of home-routers connected to a mid-sized ISP.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.peva.2021.102236</doi><orcidid>https://orcid.org/0000-0002-1192-0289</orcidid><orcidid>https://orcid.org/0000-0003-0912-7860</orcidid><orcidid>https://orcid.org/0000-0002-3186-0842</orcidid><orcidid>https://orcid.org/0000-0002-8953-4003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-5316 |
ispartof | Performance evaluation, 2021-11, Vol.151, p.102236, Article 102236 |
issn | 0166-5316 1872-745X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03372124v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Computer Science Covertness DDoS attack Gaussian mixture Home networks Hypothesis testing Networking and Internet Architecture Scaling laws |
title | Fundamental scaling laws of covert DDoS attacks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20scaling%20laws%20of%20covert%20DDoS%20attacks&rft.jtitle=Performance%20evaluation&rft.au=Ramtin,%20Amir%20Reza&rft.date=2021-11&rft.volume=151&rft.spage=102236&rft.pages=102236-&rft.artnum=102236&rft.issn=0166-5316&rft.eissn=1872-745X&rft_id=info:doi/10.1016/j.peva.2021.102236&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03372124v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166531621000535&rfr_iscdi=true |