Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy

Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (52), p.e2105586-n/a
Hauptverfasser: Hu, Yaowei, Picher, Matthieu, Tran, Ngoc Minh, Palluel, Marlène, Stoleriu, Laurentiu, Daro, Nathalie, Mornet, Stephane, Enachescu, Cristian, Freysz, Eric, Banhart, Florian, Chastanet, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2105586
container_title Advanced materials (Weinheim)
container_volume 33
creator Hu, Yaowei
Picher, Matthieu
Tran, Ngoc Minh
Palluel, Marlène
Stoleriu, Laurentiu
Daro, Nathalie
Mornet, Stephane
Enachescu, Cristian
Freysz, Eric
Banhart, Florian
Chastanet, Guillaume
description Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles. An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.
doi_str_mv 10.1002/adma.202105586
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03367060v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579092266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</originalsourceid><addsrcrecordid>eNqFkU9v0zAYxi0EYqVw5YgscYFDOv-JnfhYlcEqdWPSurPlOs7qyYmDnXTKjY-wz8gnwVFHkbhweq3Hv_fR--gB4D1GC4wQOVdVoxYEEYwYK_kLMMOM4CxHgr0EMyQoywTPyzPwJsYHhJDgiL8GZzTnCBecz8DTzd73_tfPp-3ehEY5ePtoe7237T30NVy3lT3Yakj6jVOx8a3VyrkRLnVvD6o3FbztbAtXwcfoDybAa9X6ToXeamfgulH3CdmN8M71QdUq9nAbVBsbG6P1LbxwRvchPa6sThbad-Nb8KpWLpp3z3MO7r5ebFeX2eb7t_Vquck0w5RnVaFoXQmMMcJ6h7ARxNCSE6ZZLcqSFik7YgXFZhLTZymYyDVhO6FZTjGdg89H371ysgu2UWGUXll5udzISUOU8gJxdJjYT0e2C_7HYGIvUwBtnFOt8UOUhBUCCUI4T-jHf9AHP4Q2JZGE45xgIdJVc7A4UlPqGEx9ugAjOfUqp17lqde08OHZdtg1pjrhf4pMgDgCj9aZ8T92cvnlavnX_DcMta_R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614219957</pqid></control><display><type>article</type><title>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Yaowei ; Picher, Matthieu ; Tran, Ngoc Minh ; Palluel, Marlène ; Stoleriu, Laurentiu ; Daro, Nathalie ; Mornet, Stephane ; Enachescu, Cristian ; Freysz, Eric ; Banhart, Florian ; Chastanet, Guillaume</creator><creatorcontrib>Hu, Yaowei ; Picher, Matthieu ; Tran, Ngoc Minh ; Palluel, Marlène ; Stoleriu, Laurentiu ; Daro, Nathalie ; Mornet, Stephane ; Enachescu, Cristian ; Freysz, Eric ; Banhart, Florian ; Chastanet, Guillaume</creatorcontrib><description>Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles. An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105586</identifier><identifier>PMID: 34601766</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical Sciences ; Condensed Matter ; Coordination chemistry ; Electron spin ; Electronic devices ; Laser beam heating ; Material chemistry ; Materials science ; nanohybrids ; Nanoparticles ; Nanorods ; Optical measurement ; Physics ; single nanoparticle detection ; spin crossover ; Switches ; Switching ; Temporal resolution ; Thin films ; time‐resolved spectroscopy ; Transmission electron microscopy ; ultrafast electron microscopy</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2105586-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</citedby><cites>FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</cites><orcidid>0000-0001-6829-4066 ; 0000-0002-1115-5812 ; 0000-0001-5173-5451 ; 0000-0003-4934-2792 ; 0000-0002-3707-9686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202105586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202105586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34601766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03367060$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yaowei</creatorcontrib><creatorcontrib>Picher, Matthieu</creatorcontrib><creatorcontrib>Tran, Ngoc Minh</creatorcontrib><creatorcontrib>Palluel, Marlène</creatorcontrib><creatorcontrib>Stoleriu, Laurentiu</creatorcontrib><creatorcontrib>Daro, Nathalie</creatorcontrib><creatorcontrib>Mornet, Stephane</creatorcontrib><creatorcontrib>Enachescu, Cristian</creatorcontrib><creatorcontrib>Freysz, Eric</creatorcontrib><creatorcontrib>Banhart, Florian</creatorcontrib><creatorcontrib>Chastanet, Guillaume</creatorcontrib><title>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles. An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.</description><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Coordination chemistry</subject><subject>Electron spin</subject><subject>Electronic devices</subject><subject>Laser beam heating</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>nanohybrids</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Optical measurement</subject><subject>Physics</subject><subject>single nanoparticle detection</subject><subject>spin crossover</subject><subject>Switches</subject><subject>Switching</subject><subject>Temporal resolution</subject><subject>Thin films</subject><subject>time‐resolved spectroscopy</subject><subject>Transmission electron microscopy</subject><subject>ultrafast electron microscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v0zAYxi0EYqVw5YgscYFDOv-JnfhYlcEqdWPSurPlOs7qyYmDnXTKjY-wz8gnwVFHkbhweq3Hv_fR--gB4D1GC4wQOVdVoxYEEYwYK_kLMMOM4CxHgr0EMyQoywTPyzPwJsYHhJDgiL8GZzTnCBecz8DTzd73_tfPp-3ehEY5ePtoe7237T30NVy3lT3Yakj6jVOx8a3VyrkRLnVvD6o3FbztbAtXwcfoDybAa9X6ToXeamfgulH3CdmN8M71QdUq9nAbVBsbG6P1LbxwRvchPa6sThbad-Nb8KpWLpp3z3MO7r5ebFeX2eb7t_Vquck0w5RnVaFoXQmMMcJ6h7ARxNCSE6ZZLcqSFik7YgXFZhLTZymYyDVhO6FZTjGdg89H371ysgu2UWGUXll5udzISUOU8gJxdJjYT0e2C_7HYGIvUwBtnFOt8UOUhBUCCUI4T-jHf9AHP4Q2JZGE45xgIdJVc7A4UlPqGEx9ugAjOfUqp17lqde08OHZdtg1pjrhf4pMgDgCj9aZ8T92cvnlavnX_DcMta_R</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Hu, Yaowei</creator><creator>Picher, Matthieu</creator><creator>Tran, Ngoc Minh</creator><creator>Palluel, Marlène</creator><creator>Stoleriu, Laurentiu</creator><creator>Daro, Nathalie</creator><creator>Mornet, Stephane</creator><creator>Enachescu, Cristian</creator><creator>Freysz, Eric</creator><creator>Banhart, Florian</creator><creator>Chastanet, Guillaume</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6829-4066</orcidid><orcidid>https://orcid.org/0000-0002-1115-5812</orcidid><orcidid>https://orcid.org/0000-0001-5173-5451</orcidid><orcidid>https://orcid.org/0000-0003-4934-2792</orcidid><orcidid>https://orcid.org/0000-0002-3707-9686</orcidid></search><sort><creationdate>20211201</creationdate><title>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</title><author>Hu, Yaowei ; Picher, Matthieu ; Tran, Ngoc Minh ; Palluel, Marlène ; Stoleriu, Laurentiu ; Daro, Nathalie ; Mornet, Stephane ; Enachescu, Cristian ; Freysz, Eric ; Banhart, Florian ; Chastanet, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Coordination chemistry</topic><topic>Electron spin</topic><topic>Electronic devices</topic><topic>Laser beam heating</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>nanohybrids</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Optical measurement</topic><topic>Physics</topic><topic>single nanoparticle detection</topic><topic>spin crossover</topic><topic>Switches</topic><topic>Switching</topic><topic>Temporal resolution</topic><topic>Thin films</topic><topic>time‐resolved spectroscopy</topic><topic>Transmission electron microscopy</topic><topic>ultrafast electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yaowei</creatorcontrib><creatorcontrib>Picher, Matthieu</creatorcontrib><creatorcontrib>Tran, Ngoc Minh</creatorcontrib><creatorcontrib>Palluel, Marlène</creatorcontrib><creatorcontrib>Stoleriu, Laurentiu</creatorcontrib><creatorcontrib>Daro, Nathalie</creatorcontrib><creatorcontrib>Mornet, Stephane</creatorcontrib><creatorcontrib>Enachescu, Cristian</creatorcontrib><creatorcontrib>Freysz, Eric</creatorcontrib><creatorcontrib>Banhart, Florian</creatorcontrib><creatorcontrib>Chastanet, Guillaume</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yaowei</au><au>Picher, Matthieu</au><au>Tran, Ngoc Minh</au><au>Palluel, Marlène</au><au>Stoleriu, Laurentiu</au><au>Daro, Nathalie</au><au>Mornet, Stephane</au><au>Enachescu, Cristian</au><au>Freysz, Eric</au><au>Banhart, Florian</au><au>Chastanet, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>52</issue><spage>e2105586</spage><epage>n/a</epage><pages>e2105586-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles. An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34601766</pmid><doi>10.1002/adma.202105586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6829-4066</orcidid><orcidid>https://orcid.org/0000-0002-1115-5812</orcidid><orcidid>https://orcid.org/0000-0001-5173-5451</orcidid><orcidid>https://orcid.org/0000-0003-4934-2792</orcidid><orcidid>https://orcid.org/0000-0002-3707-9686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2105586-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_hal_primary_oai_HAL_hal_03367060v1
source Wiley Online Library Journals Frontfile Complete
subjects Chemical Sciences
Condensed Matter
Coordination chemistry
Electron spin
Electronic devices
Laser beam heating
Material chemistry
Materials science
nanohybrids
Nanoparticles
Nanorods
Optical measurement
Physics
single nanoparticle detection
spin crossover
Switches
Switching
Temporal resolution
Thin films
time‐resolved spectroscopy
Transmission electron microscopy
ultrafast electron microscopy
title Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%E2%80%90Thermal%20Switching%20of%20Individual%20Plasmonically%20Activated%20Spin%20Crossover%20Nanoparticle%20Imaged%20by%20Ultrafast%20Transmission%20Electron%20Microscopy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hu,%20Yaowei&rft.date=2021-12-01&rft.volume=33&rft.issue=52&rft.spage=e2105586&rft.epage=n/a&rft.pages=e2105586-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105586&rft_dat=%3Cproquest_hal_p%3E2579092266%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614219957&rft_id=info:pmid/34601766&rfr_iscdi=true