Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy
Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced me...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-12, Vol.33 (52), p.e2105586-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e2105586 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Hu, Yaowei Picher, Matthieu Tran, Ngoc Minh Palluel, Marlène Stoleriu, Laurentiu Daro, Nathalie Mornet, Stephane Enachescu, Cristian Freysz, Eric Banhart, Florian Chastanet, Guillaume |
description | Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles.
An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns. |
doi_str_mv | 10.1002/adma.202105586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03367060v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579092266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</originalsourceid><addsrcrecordid>eNqFkU9v0zAYxi0EYqVw5YgscYFDOv-JnfhYlcEqdWPSurPlOs7qyYmDnXTKjY-wz8gnwVFHkbhweq3Hv_fR--gB4D1GC4wQOVdVoxYEEYwYK_kLMMOM4CxHgr0EMyQoywTPyzPwJsYHhJDgiL8GZzTnCBecz8DTzd73_tfPp-3ehEY5ePtoe7237T30NVy3lT3Yakj6jVOx8a3VyrkRLnVvD6o3FbztbAtXwcfoDybAa9X6ToXeamfgulH3CdmN8M71QdUq9nAbVBsbG6P1LbxwRvchPa6sThbad-Nb8KpWLpp3z3MO7r5ebFeX2eb7t_Vquck0w5RnVaFoXQmMMcJ6h7ARxNCSE6ZZLcqSFik7YgXFZhLTZymYyDVhO6FZTjGdg89H371ysgu2UWGUXll5udzISUOU8gJxdJjYT0e2C_7HYGIvUwBtnFOt8UOUhBUCCUI4T-jHf9AHP4Q2JZGE45xgIdJVc7A4UlPqGEx9ugAjOfUqp17lqde08OHZdtg1pjrhf4pMgDgCj9aZ8T92cvnlavnX_DcMta_R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614219957</pqid></control><display><type>article</type><title>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Yaowei ; Picher, Matthieu ; Tran, Ngoc Minh ; Palluel, Marlène ; Stoleriu, Laurentiu ; Daro, Nathalie ; Mornet, Stephane ; Enachescu, Cristian ; Freysz, Eric ; Banhart, Florian ; Chastanet, Guillaume</creator><creatorcontrib>Hu, Yaowei ; Picher, Matthieu ; Tran, Ngoc Minh ; Palluel, Marlène ; Stoleriu, Laurentiu ; Daro, Nathalie ; Mornet, Stephane ; Enachescu, Cristian ; Freysz, Eric ; Banhart, Florian ; Chastanet, Guillaume</creatorcontrib><description>Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles.
An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202105586</identifier><identifier>PMID: 34601766</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical Sciences ; Condensed Matter ; Coordination chemistry ; Electron spin ; Electronic devices ; Laser beam heating ; Material chemistry ; Materials science ; nanohybrids ; Nanoparticles ; Nanorods ; Optical measurement ; Physics ; single nanoparticle detection ; spin crossover ; Switches ; Switching ; Temporal resolution ; Thin films ; time‐resolved spectroscopy ; Transmission electron microscopy ; ultrafast electron microscopy</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2105586-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</citedby><cites>FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</cites><orcidid>0000-0001-6829-4066 ; 0000-0002-1115-5812 ; 0000-0001-5173-5451 ; 0000-0003-4934-2792 ; 0000-0002-3707-9686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202105586$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202105586$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34601766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03367060$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yaowei</creatorcontrib><creatorcontrib>Picher, Matthieu</creatorcontrib><creatorcontrib>Tran, Ngoc Minh</creatorcontrib><creatorcontrib>Palluel, Marlène</creatorcontrib><creatorcontrib>Stoleriu, Laurentiu</creatorcontrib><creatorcontrib>Daro, Nathalie</creatorcontrib><creatorcontrib>Mornet, Stephane</creatorcontrib><creatorcontrib>Enachescu, Cristian</creatorcontrib><creatorcontrib>Freysz, Eric</creatorcontrib><creatorcontrib>Banhart, Florian</creatorcontrib><creatorcontrib>Chastanet, Guillaume</creatorcontrib><title>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles.
An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.</description><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Coordination chemistry</subject><subject>Electron spin</subject><subject>Electronic devices</subject><subject>Laser beam heating</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>nanohybrids</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Optical measurement</subject><subject>Physics</subject><subject>single nanoparticle detection</subject><subject>spin crossover</subject><subject>Switches</subject><subject>Switching</subject><subject>Temporal resolution</subject><subject>Thin films</subject><subject>time‐resolved spectroscopy</subject><subject>Transmission electron microscopy</subject><subject>ultrafast electron microscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v0zAYxi0EYqVw5YgscYFDOv-JnfhYlcEqdWPSurPlOs7qyYmDnXTKjY-wz8gnwVFHkbhweq3Hv_fR--gB4D1GC4wQOVdVoxYEEYwYK_kLMMOM4CxHgr0EMyQoywTPyzPwJsYHhJDgiL8GZzTnCBecz8DTzd73_tfPp-3ehEY5ePtoe7237T30NVy3lT3Yakj6jVOx8a3VyrkRLnVvD6o3FbztbAtXwcfoDybAa9X6ToXeamfgulH3CdmN8M71QdUq9nAbVBsbG6P1LbxwRvchPa6sThbad-Nb8KpWLpp3z3MO7r5ebFeX2eb7t_Vquck0w5RnVaFoXQmMMcJ6h7ARxNCSE6ZZLcqSFik7YgXFZhLTZymYyDVhO6FZTjGdg89H371ysgu2UWGUXll5udzISUOU8gJxdJjYT0e2C_7HYGIvUwBtnFOt8UOUhBUCCUI4T-jHf9AHP4Q2JZGE45xgIdJVc7A4UlPqGEx9ugAjOfUqp17lqde08OHZdtg1pjrhf4pMgDgCj9aZ8T92cvnlavnX_DcMta_R</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Hu, Yaowei</creator><creator>Picher, Matthieu</creator><creator>Tran, Ngoc Minh</creator><creator>Palluel, Marlène</creator><creator>Stoleriu, Laurentiu</creator><creator>Daro, Nathalie</creator><creator>Mornet, Stephane</creator><creator>Enachescu, Cristian</creator><creator>Freysz, Eric</creator><creator>Banhart, Florian</creator><creator>Chastanet, Guillaume</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6829-4066</orcidid><orcidid>https://orcid.org/0000-0002-1115-5812</orcidid><orcidid>https://orcid.org/0000-0001-5173-5451</orcidid><orcidid>https://orcid.org/0000-0003-4934-2792</orcidid><orcidid>https://orcid.org/0000-0002-3707-9686</orcidid></search><sort><creationdate>20211201</creationdate><title>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</title><author>Hu, Yaowei ; Picher, Matthieu ; Tran, Ngoc Minh ; Palluel, Marlène ; Stoleriu, Laurentiu ; Daro, Nathalie ; Mornet, Stephane ; Enachescu, Cristian ; Freysz, Eric ; Banhart, Florian ; Chastanet, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5136-d7a3fd911101cb01e92e38625c5f9883709305731e862592e89594c25b9c54313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Coordination chemistry</topic><topic>Electron spin</topic><topic>Electronic devices</topic><topic>Laser beam heating</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>nanohybrids</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Optical measurement</topic><topic>Physics</topic><topic>single nanoparticle detection</topic><topic>spin crossover</topic><topic>Switches</topic><topic>Switching</topic><topic>Temporal resolution</topic><topic>Thin films</topic><topic>time‐resolved spectroscopy</topic><topic>Transmission electron microscopy</topic><topic>ultrafast electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yaowei</creatorcontrib><creatorcontrib>Picher, Matthieu</creatorcontrib><creatorcontrib>Tran, Ngoc Minh</creatorcontrib><creatorcontrib>Palluel, Marlène</creatorcontrib><creatorcontrib>Stoleriu, Laurentiu</creatorcontrib><creatorcontrib>Daro, Nathalie</creatorcontrib><creatorcontrib>Mornet, Stephane</creatorcontrib><creatorcontrib>Enachescu, Cristian</creatorcontrib><creatorcontrib>Freysz, Eric</creatorcontrib><creatorcontrib>Banhart, Florian</creatorcontrib><creatorcontrib>Chastanet, Guillaume</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yaowei</au><au>Picher, Matthieu</au><au>Tran, Ngoc Minh</au><au>Palluel, Marlène</au><au>Stoleriu, Laurentiu</au><au>Daro, Nathalie</au><au>Mornet, Stephane</au><au>Enachescu, Cristian</au><au>Freysz, Eric</au><au>Banhart, Florian</au><au>Chastanet, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>52</issue><spage>e2105586</spage><epage>n/a</epage><pages>e2105586-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light‐induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio‐temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time‐resolved optical measurements performed on an assembly of these particles.
An ultrafast electron microscopy study shows how an individual spin crossover nanoparticle, with different number of embedded gold nanorods, acts as an efficient photoswitch where the size of the particle can be controlled within less than 20 ns.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34601766</pmid><doi>10.1002/adma.202105586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6829-4066</orcidid><orcidid>https://orcid.org/0000-0002-1115-5812</orcidid><orcidid>https://orcid.org/0000-0001-5173-5451</orcidid><orcidid>https://orcid.org/0000-0003-4934-2792</orcidid><orcidid>https://orcid.org/0000-0002-3707-9686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-12, Vol.33 (52), p.e2105586-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03367060v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical Sciences Condensed Matter Coordination chemistry Electron spin Electronic devices Laser beam heating Material chemistry Materials science nanohybrids Nanoparticles Nanorods Optical measurement Physics single nanoparticle detection spin crossover Switches Switching Temporal resolution Thin films time‐resolved spectroscopy Transmission electron microscopy ultrafast electron microscopy |
title | Photo‐Thermal Switching of Individual Plasmonically Activated Spin Crossover Nanoparticle Imaged by Ultrafast Transmission Electron Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photo%E2%80%90Thermal%20Switching%20of%20Individual%20Plasmonically%20Activated%20Spin%20Crossover%20Nanoparticle%20Imaged%20by%20Ultrafast%20Transmission%20Electron%20Microscopy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hu,%20Yaowei&rft.date=2021-12-01&rft.volume=33&rft.issue=52&rft.spage=e2105586&rft.epage=n/a&rft.pages=e2105586-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202105586&rft_dat=%3Cproquest_hal_p%3E2579092266%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614219957&rft_id=info:pmid/34601766&rfr_iscdi=true |