Seismic detection of the martian core
Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al. , Knapmeyer-Endrun et al. , and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspectiv...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-07, Vol.373 (6553), p.443-448 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 6553 |
container_start_page | 443 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 373 |
creator | Stähler, Simon C. Khan, Amir Banerdt, W. Bruce Lognonné, Philippe Giardini, Domenico Ceylan, Savas Drilleau, Mélanie Duran, A. Cecilia Garcia, Raphaël F. Huang, Quancheng Kim, Doyeon Lekic, Vedran Samuel, Henri Schimmel, Martin Schmerr, Nicholas Sollberger, David Stutzmann, Éléonore Xu, Zongbo Antonangeli, Daniele Charalambous, Constantinos Davis, Paul M. Irving, Jessica C. E. Kawamura, Taichi Knapmeyer, Martin Maguire, Ross Marusiak, Angela G. Panning, Mark P. Perrin, Clément Plesa, Ana-Catalina Rivoldini, Attilio Schmelzbach, Cédric Zenhäusern, Géraldine Beucler, Éric Clinton, John Dahmen, Nikolaj van Driel, Martin Gudkova, Tamara Horleston, Anna Pike, W. Thomas Plasman, Matthieu Smrekar, Suzanne E. |
description | Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan
et al.
, Knapmeyer-Endrun
et al.
, and Stähler
et al.
used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet.
Science
, abf2966, abf8966, abi7730, this issue p.
434
, p.
438
, p.
443
see also abj8914, p.
388
Data from the InSight mission on Mars help constrain the structure and properties of the martian interior.
Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes. |
doi_str_mv | 10.1126/science.abi7730 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03365934v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566029235</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKtnr3sR9LDtJNlkk2Mp1goFD-o5ZJMJjWw3dbMV_PduafE08Obj8fgIuacwo5TJeXYRO4cz28S65nBBJhS0KDUDfkkmAFyWCmpxTW5y_gIYf5pPyMM7xryLrvA4oBti6ooUimGLxc72Q7Rd4VKPt-Qq2Dbj3flOyefq-WO5LjdvL6_Lxaa0FVdD6QEUdUIAR8eDokJprivaqCDQ17RhvlISaO1Zozj4EJi36L1sGJXIdMOn5OnUu7Wt2fdx3PBrko1mvdiYYwacy3F39UNH9vHE7vv0fcA8mF3MDtvWdpgO2TAhJTDNuBjR-Ql1fcq5x_DfTcEc5ZmzPHOWx_8AQpdicQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566029235</pqid></control><display><type>article</type><title>Seismic detection of the martian core</title><source>American Association for the Advancement of Science</source><creator>Stähler, Simon C. ; Khan, Amir ; Banerdt, W. Bruce ; Lognonné, Philippe ; Giardini, Domenico ; Ceylan, Savas ; Drilleau, Mélanie ; Duran, A. Cecilia ; Garcia, Raphaël F. ; Huang, Quancheng ; Kim, Doyeon ; Lekic, Vedran ; Samuel, Henri ; Schimmel, Martin ; Schmerr, Nicholas ; Sollberger, David ; Stutzmann, Éléonore ; Xu, Zongbo ; Antonangeli, Daniele ; Charalambous, Constantinos ; Davis, Paul M. ; Irving, Jessica C. E. ; Kawamura, Taichi ; Knapmeyer, Martin ; Maguire, Ross ; Marusiak, Angela G. ; Panning, Mark P. ; Perrin, Clément ; Plesa, Ana-Catalina ; Rivoldini, Attilio ; Schmelzbach, Cédric ; Zenhäusern, Géraldine ; Beucler, Éric ; Clinton, John ; Dahmen, Nikolaj ; van Driel, Martin ; Gudkova, Tamara ; Horleston, Anna ; Pike, W. Thomas ; Plasman, Matthieu ; Smrekar, Suzanne E.</creator><creatorcontrib>Stähler, Simon C. ; Khan, Amir ; Banerdt, W. Bruce ; Lognonné, Philippe ; Giardini, Domenico ; Ceylan, Savas ; Drilleau, Mélanie ; Duran, A. Cecilia ; Garcia, Raphaël F. ; Huang, Quancheng ; Kim, Doyeon ; Lekic, Vedran ; Samuel, Henri ; Schimmel, Martin ; Schmerr, Nicholas ; Sollberger, David ; Stutzmann, Éléonore ; Xu, Zongbo ; Antonangeli, Daniele ; Charalambous, Constantinos ; Davis, Paul M. ; Irving, Jessica C. E. ; Kawamura, Taichi ; Knapmeyer, Martin ; Maguire, Ross ; Marusiak, Angela G. ; Panning, Mark P. ; Perrin, Clément ; Plesa, Ana-Catalina ; Rivoldini, Attilio ; Schmelzbach, Cédric ; Zenhäusern, Géraldine ; Beucler, Éric ; Clinton, John ; Dahmen, Nikolaj ; van Driel, Martin ; Gudkova, Tamara ; Horleston, Anna ; Pike, W. Thomas ; Plasman, Matthieu ; Smrekar, Suzanne E.</creatorcontrib><description>Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan
et al.
, Knapmeyer-Endrun
et al.
, and Stähler
et al.
used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet.
Science
, abf2966, abf8966, abi7730, this issue p.
434
, p.
438
, p.
443
see also abj8914, p.
388
Data from the InSight mission on Mars help constrain the structure and properties of the martian interior.
Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abi7730</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Earth Sciences ; Planetology ; Sciences of the Universe</subject><ispartof>Science (American Association for the Advancement of Science), 2021-07, Vol.373 (6553), p.443-448</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</citedby><cites>FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</cites><orcidid>0000-0002-5573-7638 ; 0000-0003-4594-2336 ; 0000-0001-9401-4910 ; 0000-0001-8775-075X ; 0000-0003-1460-6663 ; 0000-0002-0866-8246 ; 0000-0002-9139-3895 ; 0000-0001-6925-1383 ; 0000-0002-9114-6747 ; 0000-0002-1014-920X ; 0000-0002-3256-1262 ; 0000-0002-4348-7475 ; 0000-0002-8938-4615 ; 0000-0002-7660-6231 ; 0000-0002-6552-6850 ; 0000-0001-5246-5561 ; 0000-0003-3125-1542 ; 0000-0002-6748-6522 ; 0000-0002-2041-3190 ; 0000-0003-4269-930X ; 0000-0002-7200-5682 ; 0000-0001-6408-6681 ; 0000-0002-7787-4836 ; 0000-0002-8626-9283 ; 0000-0002-0783-2489 ; 0000-0003-0319-2514 ; 0000-0003-2605-4990 ; 0000-0001-9888-4729 ; 0000-0002-0822-8849 ; 0000-0002-5681-5159 ; 0000-0001-5625-9706 ; 0000-0001-8626-2703 ; 0000-0002-3548-272X ; 0000-0003-2601-4462 ; 0000-0003-1380-8714 ; 0000-0002-5670-6761 ; 0000-0002-5630-2089 ; 0000-0002-4952-5700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03365934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stähler, Simon C.</creatorcontrib><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Banerdt, W. Bruce</creatorcontrib><creatorcontrib>Lognonné, Philippe</creatorcontrib><creatorcontrib>Giardini, Domenico</creatorcontrib><creatorcontrib>Ceylan, Savas</creatorcontrib><creatorcontrib>Drilleau, Mélanie</creatorcontrib><creatorcontrib>Duran, A. Cecilia</creatorcontrib><creatorcontrib>Garcia, Raphaël F.</creatorcontrib><creatorcontrib>Huang, Quancheng</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lekic, Vedran</creatorcontrib><creatorcontrib>Samuel, Henri</creatorcontrib><creatorcontrib>Schimmel, Martin</creatorcontrib><creatorcontrib>Schmerr, Nicholas</creatorcontrib><creatorcontrib>Sollberger, David</creatorcontrib><creatorcontrib>Stutzmann, Éléonore</creatorcontrib><creatorcontrib>Xu, Zongbo</creatorcontrib><creatorcontrib>Antonangeli, Daniele</creatorcontrib><creatorcontrib>Charalambous, Constantinos</creatorcontrib><creatorcontrib>Davis, Paul M.</creatorcontrib><creatorcontrib>Irving, Jessica C. E.</creatorcontrib><creatorcontrib>Kawamura, Taichi</creatorcontrib><creatorcontrib>Knapmeyer, Martin</creatorcontrib><creatorcontrib>Maguire, Ross</creatorcontrib><creatorcontrib>Marusiak, Angela G.</creatorcontrib><creatorcontrib>Panning, Mark P.</creatorcontrib><creatorcontrib>Perrin, Clément</creatorcontrib><creatorcontrib>Plesa, Ana-Catalina</creatorcontrib><creatorcontrib>Rivoldini, Attilio</creatorcontrib><creatorcontrib>Schmelzbach, Cédric</creatorcontrib><creatorcontrib>Zenhäusern, Géraldine</creatorcontrib><creatorcontrib>Beucler, Éric</creatorcontrib><creatorcontrib>Clinton, John</creatorcontrib><creatorcontrib>Dahmen, Nikolaj</creatorcontrib><creatorcontrib>van Driel, Martin</creatorcontrib><creatorcontrib>Gudkova, Tamara</creatorcontrib><creatorcontrib>Horleston, Anna</creatorcontrib><creatorcontrib>Pike, W. Thomas</creatorcontrib><creatorcontrib>Plasman, Matthieu</creatorcontrib><creatorcontrib>Smrekar, Suzanne E.</creatorcontrib><title>Seismic detection of the martian core</title><title>Science (American Association for the Advancement of Science)</title><description>Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan
et al.
, Knapmeyer-Endrun
et al.
, and Stähler
et al.
used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet.
Science
, abf2966, abf8966, abi7730, this issue p.
434
, p.
438
, p.
443
see also abj8914, p.
388
Data from the InSight mission on Mars help constrain the structure and properties of the martian interior.
Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.</description><subject>Earth Sciences</subject><subject>Planetology</subject><subject>Sciences of the Universe</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKtnr3sR9LDtJNlkk2Mp1goFD-o5ZJMJjWw3dbMV_PduafE08Obj8fgIuacwo5TJeXYRO4cz28S65nBBJhS0KDUDfkkmAFyWCmpxTW5y_gIYf5pPyMM7xryLrvA4oBti6ooUimGLxc72Q7Rd4VKPt-Qq2Dbj3flOyefq-WO5LjdvL6_Lxaa0FVdD6QEUdUIAR8eDokJprivaqCDQ17RhvlISaO1Zozj4EJi36L1sGJXIdMOn5OnUu7Wt2fdx3PBrko1mvdiYYwacy3F39UNH9vHE7vv0fcA8mF3MDtvWdpgO2TAhJTDNuBjR-Ql1fcq5x_DfTcEc5ZmzPHOWx_8AQpdicQ</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Stähler, Simon C.</creator><creator>Khan, Amir</creator><creator>Banerdt, W. Bruce</creator><creator>Lognonné, Philippe</creator><creator>Giardini, Domenico</creator><creator>Ceylan, Savas</creator><creator>Drilleau, Mélanie</creator><creator>Duran, A. Cecilia</creator><creator>Garcia, Raphaël F.</creator><creator>Huang, Quancheng</creator><creator>Kim, Doyeon</creator><creator>Lekic, Vedran</creator><creator>Samuel, Henri</creator><creator>Schimmel, Martin</creator><creator>Schmerr, Nicholas</creator><creator>Sollberger, David</creator><creator>Stutzmann, Éléonore</creator><creator>Xu, Zongbo</creator><creator>Antonangeli, Daniele</creator><creator>Charalambous, Constantinos</creator><creator>Davis, Paul M.</creator><creator>Irving, Jessica C. E.</creator><creator>Kawamura, Taichi</creator><creator>Knapmeyer, Martin</creator><creator>Maguire, Ross</creator><creator>Marusiak, Angela G.</creator><creator>Panning, Mark P.</creator><creator>Perrin, Clément</creator><creator>Plesa, Ana-Catalina</creator><creator>Rivoldini, Attilio</creator><creator>Schmelzbach, Cédric</creator><creator>Zenhäusern, Géraldine</creator><creator>Beucler, Éric</creator><creator>Clinton, John</creator><creator>Dahmen, Nikolaj</creator><creator>van Driel, Martin</creator><creator>Gudkova, Tamara</creator><creator>Horleston, Anna</creator><creator>Pike, W. Thomas</creator><creator>Plasman, Matthieu</creator><creator>Smrekar, Suzanne E.</creator><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5573-7638</orcidid><orcidid>https://orcid.org/0000-0003-4594-2336</orcidid><orcidid>https://orcid.org/0000-0001-9401-4910</orcidid><orcidid>https://orcid.org/0000-0001-8775-075X</orcidid><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0002-0866-8246</orcidid><orcidid>https://orcid.org/0000-0002-9139-3895</orcidid><orcidid>https://orcid.org/0000-0001-6925-1383</orcidid><orcidid>https://orcid.org/0000-0002-9114-6747</orcidid><orcidid>https://orcid.org/0000-0002-1014-920X</orcidid><orcidid>https://orcid.org/0000-0002-3256-1262</orcidid><orcidid>https://orcid.org/0000-0002-4348-7475</orcidid><orcidid>https://orcid.org/0000-0002-8938-4615</orcidid><orcidid>https://orcid.org/0000-0002-7660-6231</orcidid><orcidid>https://orcid.org/0000-0002-6552-6850</orcidid><orcidid>https://orcid.org/0000-0001-5246-5561</orcidid><orcidid>https://orcid.org/0000-0003-3125-1542</orcidid><orcidid>https://orcid.org/0000-0002-6748-6522</orcidid><orcidid>https://orcid.org/0000-0002-2041-3190</orcidid><orcidid>https://orcid.org/0000-0003-4269-930X</orcidid><orcidid>https://orcid.org/0000-0002-7200-5682</orcidid><orcidid>https://orcid.org/0000-0001-6408-6681</orcidid><orcidid>https://orcid.org/0000-0002-7787-4836</orcidid><orcidid>https://orcid.org/0000-0002-8626-9283</orcidid><orcidid>https://orcid.org/0000-0002-0783-2489</orcidid><orcidid>https://orcid.org/0000-0003-0319-2514</orcidid><orcidid>https://orcid.org/0000-0003-2605-4990</orcidid><orcidid>https://orcid.org/0000-0001-9888-4729</orcidid><orcidid>https://orcid.org/0000-0002-0822-8849</orcidid><orcidid>https://orcid.org/0000-0002-5681-5159</orcidid><orcidid>https://orcid.org/0000-0001-5625-9706</orcidid><orcidid>https://orcid.org/0000-0001-8626-2703</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><orcidid>https://orcid.org/0000-0003-2601-4462</orcidid><orcidid>https://orcid.org/0000-0003-1380-8714</orcidid><orcidid>https://orcid.org/0000-0002-5670-6761</orcidid><orcidid>https://orcid.org/0000-0002-5630-2089</orcidid><orcidid>https://orcid.org/0000-0002-4952-5700</orcidid></search><sort><creationdate>20210723</creationdate><title>Seismic detection of the martian core</title><author>Stähler, Simon C. ; Khan, Amir ; Banerdt, W. Bruce ; Lognonné, Philippe ; Giardini, Domenico ; Ceylan, Savas ; Drilleau, Mélanie ; Duran, A. Cecilia ; Garcia, Raphaël F. ; Huang, Quancheng ; Kim, Doyeon ; Lekic, Vedran ; Samuel, Henri ; Schimmel, Martin ; Schmerr, Nicholas ; Sollberger, David ; Stutzmann, Éléonore ; Xu, Zongbo ; Antonangeli, Daniele ; Charalambous, Constantinos ; Davis, Paul M. ; Irving, Jessica C. E. ; Kawamura, Taichi ; Knapmeyer, Martin ; Maguire, Ross ; Marusiak, Angela G. ; Panning, Mark P. ; Perrin, Clément ; Plesa, Ana-Catalina ; Rivoldini, Attilio ; Schmelzbach, Cédric ; Zenhäusern, Géraldine ; Beucler, Éric ; Clinton, John ; Dahmen, Nikolaj ; van Driel, Martin ; Gudkova, Tamara ; Horleston, Anna ; Pike, W. Thomas ; Plasman, Matthieu ; Smrekar, Suzanne E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Earth Sciences</topic><topic>Planetology</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stähler, Simon C.</creatorcontrib><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Banerdt, W. Bruce</creatorcontrib><creatorcontrib>Lognonné, Philippe</creatorcontrib><creatorcontrib>Giardini, Domenico</creatorcontrib><creatorcontrib>Ceylan, Savas</creatorcontrib><creatorcontrib>Drilleau, Mélanie</creatorcontrib><creatorcontrib>Duran, A. Cecilia</creatorcontrib><creatorcontrib>Garcia, Raphaël F.</creatorcontrib><creatorcontrib>Huang, Quancheng</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lekic, Vedran</creatorcontrib><creatorcontrib>Samuel, Henri</creatorcontrib><creatorcontrib>Schimmel, Martin</creatorcontrib><creatorcontrib>Schmerr, Nicholas</creatorcontrib><creatorcontrib>Sollberger, David</creatorcontrib><creatorcontrib>Stutzmann, Éléonore</creatorcontrib><creatorcontrib>Xu, Zongbo</creatorcontrib><creatorcontrib>Antonangeli, Daniele</creatorcontrib><creatorcontrib>Charalambous, Constantinos</creatorcontrib><creatorcontrib>Davis, Paul M.</creatorcontrib><creatorcontrib>Irving, Jessica C. E.</creatorcontrib><creatorcontrib>Kawamura, Taichi</creatorcontrib><creatorcontrib>Knapmeyer, Martin</creatorcontrib><creatorcontrib>Maguire, Ross</creatorcontrib><creatorcontrib>Marusiak, Angela G.</creatorcontrib><creatorcontrib>Panning, Mark P.</creatorcontrib><creatorcontrib>Perrin, Clément</creatorcontrib><creatorcontrib>Plesa, Ana-Catalina</creatorcontrib><creatorcontrib>Rivoldini, Attilio</creatorcontrib><creatorcontrib>Schmelzbach, Cédric</creatorcontrib><creatorcontrib>Zenhäusern, Géraldine</creatorcontrib><creatorcontrib>Beucler, Éric</creatorcontrib><creatorcontrib>Clinton, John</creatorcontrib><creatorcontrib>Dahmen, Nikolaj</creatorcontrib><creatorcontrib>van Driel, Martin</creatorcontrib><creatorcontrib>Gudkova, Tamara</creatorcontrib><creatorcontrib>Horleston, Anna</creatorcontrib><creatorcontrib>Pike, W. Thomas</creatorcontrib><creatorcontrib>Plasman, Matthieu</creatorcontrib><creatorcontrib>Smrekar, Suzanne E.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stähler, Simon C.</au><au>Khan, Amir</au><au>Banerdt, W. Bruce</au><au>Lognonné, Philippe</au><au>Giardini, Domenico</au><au>Ceylan, Savas</au><au>Drilleau, Mélanie</au><au>Duran, A. Cecilia</au><au>Garcia, Raphaël F.</au><au>Huang, Quancheng</au><au>Kim, Doyeon</au><au>Lekic, Vedran</au><au>Samuel, Henri</au><au>Schimmel, Martin</au><au>Schmerr, Nicholas</au><au>Sollberger, David</au><au>Stutzmann, Éléonore</au><au>Xu, Zongbo</au><au>Antonangeli, Daniele</au><au>Charalambous, Constantinos</au><au>Davis, Paul M.</au><au>Irving, Jessica C. E.</au><au>Kawamura, Taichi</au><au>Knapmeyer, Martin</au><au>Maguire, Ross</au><au>Marusiak, Angela G.</au><au>Panning, Mark P.</au><au>Perrin, Clément</au><au>Plesa, Ana-Catalina</au><au>Rivoldini, Attilio</au><au>Schmelzbach, Cédric</au><au>Zenhäusern, Géraldine</au><au>Beucler, Éric</au><au>Clinton, John</au><au>Dahmen, Nikolaj</au><au>van Driel, Martin</au><au>Gudkova, Tamara</au><au>Horleston, Anna</au><au>Pike, W. Thomas</au><au>Plasman, Matthieu</au><au>Smrekar, Suzanne E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic detection of the martian core</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-07-23</date><risdate>2021</risdate><volume>373</volume><issue>6553</issue><spage>443</spage><epage>448</epage><pages>443-448</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan
et al.
, Knapmeyer-Endrun
et al.
, and Stähler
et al.
used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet.
Science
, abf2966, abf8966, abi7730, this issue p.
434
, p.
438
, p.
443
see also abj8914, p.
388
Data from the InSight mission on Mars help constrain the structure and properties of the martian interior.
Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><doi>10.1126/science.abi7730</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5573-7638</orcidid><orcidid>https://orcid.org/0000-0003-4594-2336</orcidid><orcidid>https://orcid.org/0000-0001-9401-4910</orcidid><orcidid>https://orcid.org/0000-0001-8775-075X</orcidid><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0002-0866-8246</orcidid><orcidid>https://orcid.org/0000-0002-9139-3895</orcidid><orcidid>https://orcid.org/0000-0001-6925-1383</orcidid><orcidid>https://orcid.org/0000-0002-9114-6747</orcidid><orcidid>https://orcid.org/0000-0002-1014-920X</orcidid><orcidid>https://orcid.org/0000-0002-3256-1262</orcidid><orcidid>https://orcid.org/0000-0002-4348-7475</orcidid><orcidid>https://orcid.org/0000-0002-8938-4615</orcidid><orcidid>https://orcid.org/0000-0002-7660-6231</orcidid><orcidid>https://orcid.org/0000-0002-6552-6850</orcidid><orcidid>https://orcid.org/0000-0001-5246-5561</orcidid><orcidid>https://orcid.org/0000-0003-3125-1542</orcidid><orcidid>https://orcid.org/0000-0002-6748-6522</orcidid><orcidid>https://orcid.org/0000-0002-2041-3190</orcidid><orcidid>https://orcid.org/0000-0003-4269-930X</orcidid><orcidid>https://orcid.org/0000-0002-7200-5682</orcidid><orcidid>https://orcid.org/0000-0001-6408-6681</orcidid><orcidid>https://orcid.org/0000-0002-7787-4836</orcidid><orcidid>https://orcid.org/0000-0002-8626-9283</orcidid><orcidid>https://orcid.org/0000-0002-0783-2489</orcidid><orcidid>https://orcid.org/0000-0003-0319-2514</orcidid><orcidid>https://orcid.org/0000-0003-2605-4990</orcidid><orcidid>https://orcid.org/0000-0001-9888-4729</orcidid><orcidid>https://orcid.org/0000-0002-0822-8849</orcidid><orcidid>https://orcid.org/0000-0002-5681-5159</orcidid><orcidid>https://orcid.org/0000-0001-5625-9706</orcidid><orcidid>https://orcid.org/0000-0001-8626-2703</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><orcidid>https://orcid.org/0000-0003-2601-4462</orcidid><orcidid>https://orcid.org/0000-0003-1380-8714</orcidid><orcidid>https://orcid.org/0000-0002-5670-6761</orcidid><orcidid>https://orcid.org/0000-0002-5630-2089</orcidid><orcidid>https://orcid.org/0000-0002-4952-5700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-07, Vol.373 (6553), p.443-448 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03365934v1 |
source | American Association for the Advancement of Science |
subjects | Earth Sciences Planetology Sciences of the Universe |
title | Seismic detection of the martian core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20detection%20of%20the%20martian%20core&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=St%C3%A4hler,%20Simon%20C.&rft.date=2021-07-23&rft.volume=373&rft.issue=6553&rft.spage=443&rft.epage=448&rft.pages=443-448&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abi7730&rft_dat=%3Cproquest_hal_p%3E2566029235%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566029235&rft_id=info:pmid/&rfr_iscdi=true |