Seismic detection of the martian core

Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al. , Knapmeyer-Endrun et al. , and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-07, Vol.373 (6553), p.443-448
Hauptverfasser: Stähler, Simon C., Khan, Amir, Banerdt, W. Bruce, Lognonné, Philippe, Giardini, Domenico, Ceylan, Savas, Drilleau, Mélanie, Duran, A. Cecilia, Garcia, Raphaël F., Huang, Quancheng, Kim, Doyeon, Lekic, Vedran, Samuel, Henri, Schimmel, Martin, Schmerr, Nicholas, Sollberger, David, Stutzmann, Éléonore, Xu, Zongbo, Antonangeli, Daniele, Charalambous, Constantinos, Davis, Paul M., Irving, Jessica C. E., Kawamura, Taichi, Knapmeyer, Martin, Maguire, Ross, Marusiak, Angela G., Panning, Mark P., Perrin, Clément, Plesa, Ana-Catalina, Rivoldini, Attilio, Schmelzbach, Cédric, Zenhäusern, Géraldine, Beucler, Éric, Clinton, John, Dahmen, Nikolaj, van Driel, Martin, Gudkova, Tamara, Horleston, Anna, Pike, W. Thomas, Plasman, Matthieu, Smrekar, Suzanne E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 6553
container_start_page 443
container_title Science (American Association for the Advancement of Science)
container_volume 373
creator Stähler, Simon C.
Khan, Amir
Banerdt, W. Bruce
Lognonné, Philippe
Giardini, Domenico
Ceylan, Savas
Drilleau, Mélanie
Duran, A. Cecilia
Garcia, Raphaël F.
Huang, Quancheng
Kim, Doyeon
Lekic, Vedran
Samuel, Henri
Schimmel, Martin
Schmerr, Nicholas
Sollberger, David
Stutzmann, Éléonore
Xu, Zongbo
Antonangeli, Daniele
Charalambous, Constantinos
Davis, Paul M.
Irving, Jessica C. E.
Kawamura, Taichi
Knapmeyer, Martin
Maguire, Ross
Marusiak, Angela G.
Panning, Mark P.
Perrin, Clément
Plesa, Ana-Catalina
Rivoldini, Attilio
Schmelzbach, Cédric
Zenhäusern, Géraldine
Beucler, Éric
Clinton, John
Dahmen, Nikolaj
van Driel, Martin
Gudkova, Tamara
Horleston, Anna
Pike, W. Thomas
Plasman, Matthieu
Smrekar, Suzanne E.
description Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al. , Knapmeyer-Endrun et al. , and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science , abf2966, abf8966, abi7730, this issue p. 434 , p. 438 , p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian interior. Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.
doi_str_mv 10.1126/science.abi7730
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03365934v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566029235</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKtnr3sR9LDtJNlkk2Mp1goFD-o5ZJMJjWw3dbMV_PduafE08Obj8fgIuacwo5TJeXYRO4cz28S65nBBJhS0KDUDfkkmAFyWCmpxTW5y_gIYf5pPyMM7xryLrvA4oBti6ooUimGLxc72Q7Rd4VKPt-Qq2Dbj3flOyefq-WO5LjdvL6_Lxaa0FVdD6QEUdUIAR8eDokJprivaqCDQ17RhvlISaO1Zozj4EJi36L1sGJXIdMOn5OnUu7Wt2fdx3PBrko1mvdiYYwacy3F39UNH9vHE7vv0fcA8mF3MDtvWdpgO2TAhJTDNuBjR-Ql1fcq5x_DfTcEc5ZmzPHOWx_8AQpdicQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566029235</pqid></control><display><type>article</type><title>Seismic detection of the martian core</title><source>American Association for the Advancement of Science</source><creator>Stähler, Simon C. ; Khan, Amir ; Banerdt, W. Bruce ; Lognonné, Philippe ; Giardini, Domenico ; Ceylan, Savas ; Drilleau, Mélanie ; Duran, A. Cecilia ; Garcia, Raphaël F. ; Huang, Quancheng ; Kim, Doyeon ; Lekic, Vedran ; Samuel, Henri ; Schimmel, Martin ; Schmerr, Nicholas ; Sollberger, David ; Stutzmann, Éléonore ; Xu, Zongbo ; Antonangeli, Daniele ; Charalambous, Constantinos ; Davis, Paul M. ; Irving, Jessica C. E. ; Kawamura, Taichi ; Knapmeyer, Martin ; Maguire, Ross ; Marusiak, Angela G. ; Panning, Mark P. ; Perrin, Clément ; Plesa, Ana-Catalina ; Rivoldini, Attilio ; Schmelzbach, Cédric ; Zenhäusern, Géraldine ; Beucler, Éric ; Clinton, John ; Dahmen, Nikolaj ; van Driel, Martin ; Gudkova, Tamara ; Horleston, Anna ; Pike, W. Thomas ; Plasman, Matthieu ; Smrekar, Suzanne E.</creator><creatorcontrib>Stähler, Simon C. ; Khan, Amir ; Banerdt, W. Bruce ; Lognonné, Philippe ; Giardini, Domenico ; Ceylan, Savas ; Drilleau, Mélanie ; Duran, A. Cecilia ; Garcia, Raphaël F. ; Huang, Quancheng ; Kim, Doyeon ; Lekic, Vedran ; Samuel, Henri ; Schimmel, Martin ; Schmerr, Nicholas ; Sollberger, David ; Stutzmann, Éléonore ; Xu, Zongbo ; Antonangeli, Daniele ; Charalambous, Constantinos ; Davis, Paul M. ; Irving, Jessica C. E. ; Kawamura, Taichi ; Knapmeyer, Martin ; Maguire, Ross ; Marusiak, Angela G. ; Panning, Mark P. ; Perrin, Clément ; Plesa, Ana-Catalina ; Rivoldini, Attilio ; Schmelzbach, Cédric ; Zenhäusern, Géraldine ; Beucler, Éric ; Clinton, John ; Dahmen, Nikolaj ; van Driel, Martin ; Gudkova, Tamara ; Horleston, Anna ; Pike, W. Thomas ; Plasman, Matthieu ; Smrekar, Suzanne E.</creatorcontrib><description>Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al. , Knapmeyer-Endrun et al. , and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science , abf2966, abf8966, abi7730, this issue p. 434 , p. 438 , p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian interior. Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abi7730</identifier><language>eng</language><publisher>American Association for the Advancement of Science (AAAS)</publisher><subject>Earth Sciences ; Planetology ; Sciences of the Universe</subject><ispartof>Science (American Association for the Advancement of Science), 2021-07, Vol.373 (6553), p.443-448</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</citedby><cites>FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</cites><orcidid>0000-0002-5573-7638 ; 0000-0003-4594-2336 ; 0000-0001-9401-4910 ; 0000-0001-8775-075X ; 0000-0003-1460-6663 ; 0000-0002-0866-8246 ; 0000-0002-9139-3895 ; 0000-0001-6925-1383 ; 0000-0002-9114-6747 ; 0000-0002-1014-920X ; 0000-0002-3256-1262 ; 0000-0002-4348-7475 ; 0000-0002-8938-4615 ; 0000-0002-7660-6231 ; 0000-0002-6552-6850 ; 0000-0001-5246-5561 ; 0000-0003-3125-1542 ; 0000-0002-6748-6522 ; 0000-0002-2041-3190 ; 0000-0003-4269-930X ; 0000-0002-7200-5682 ; 0000-0001-6408-6681 ; 0000-0002-7787-4836 ; 0000-0002-8626-9283 ; 0000-0002-0783-2489 ; 0000-0003-0319-2514 ; 0000-0003-2605-4990 ; 0000-0001-9888-4729 ; 0000-0002-0822-8849 ; 0000-0002-5681-5159 ; 0000-0001-5625-9706 ; 0000-0001-8626-2703 ; 0000-0002-3548-272X ; 0000-0003-2601-4462 ; 0000-0003-1380-8714 ; 0000-0002-5670-6761 ; 0000-0002-5630-2089 ; 0000-0002-4952-5700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03365934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stähler, Simon C.</creatorcontrib><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Banerdt, W. Bruce</creatorcontrib><creatorcontrib>Lognonné, Philippe</creatorcontrib><creatorcontrib>Giardini, Domenico</creatorcontrib><creatorcontrib>Ceylan, Savas</creatorcontrib><creatorcontrib>Drilleau, Mélanie</creatorcontrib><creatorcontrib>Duran, A. Cecilia</creatorcontrib><creatorcontrib>Garcia, Raphaël F.</creatorcontrib><creatorcontrib>Huang, Quancheng</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lekic, Vedran</creatorcontrib><creatorcontrib>Samuel, Henri</creatorcontrib><creatorcontrib>Schimmel, Martin</creatorcontrib><creatorcontrib>Schmerr, Nicholas</creatorcontrib><creatorcontrib>Sollberger, David</creatorcontrib><creatorcontrib>Stutzmann, Éléonore</creatorcontrib><creatorcontrib>Xu, Zongbo</creatorcontrib><creatorcontrib>Antonangeli, Daniele</creatorcontrib><creatorcontrib>Charalambous, Constantinos</creatorcontrib><creatorcontrib>Davis, Paul M.</creatorcontrib><creatorcontrib>Irving, Jessica C. E.</creatorcontrib><creatorcontrib>Kawamura, Taichi</creatorcontrib><creatorcontrib>Knapmeyer, Martin</creatorcontrib><creatorcontrib>Maguire, Ross</creatorcontrib><creatorcontrib>Marusiak, Angela G.</creatorcontrib><creatorcontrib>Panning, Mark P.</creatorcontrib><creatorcontrib>Perrin, Clément</creatorcontrib><creatorcontrib>Plesa, Ana-Catalina</creatorcontrib><creatorcontrib>Rivoldini, Attilio</creatorcontrib><creatorcontrib>Schmelzbach, Cédric</creatorcontrib><creatorcontrib>Zenhäusern, Géraldine</creatorcontrib><creatorcontrib>Beucler, Éric</creatorcontrib><creatorcontrib>Clinton, John</creatorcontrib><creatorcontrib>Dahmen, Nikolaj</creatorcontrib><creatorcontrib>van Driel, Martin</creatorcontrib><creatorcontrib>Gudkova, Tamara</creatorcontrib><creatorcontrib>Horleston, Anna</creatorcontrib><creatorcontrib>Pike, W. Thomas</creatorcontrib><creatorcontrib>Plasman, Matthieu</creatorcontrib><creatorcontrib>Smrekar, Suzanne E.</creatorcontrib><title>Seismic detection of the martian core</title><title>Science (American Association for the Advancement of Science)</title><description>Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al. , Knapmeyer-Endrun et al. , and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science , abf2966, abf8966, abi7730, this issue p. 434 , p. 438 , p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian interior. Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.</description><subject>Earth Sciences</subject><subject>Planetology</subject><subject>Sciences of the Universe</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKtnr3sR9LDtJNlkk2Mp1goFD-o5ZJMJjWw3dbMV_PduafE08Obj8fgIuacwo5TJeXYRO4cz28S65nBBJhS0KDUDfkkmAFyWCmpxTW5y_gIYf5pPyMM7xryLrvA4oBti6ooUimGLxc72Q7Rd4VKPt-Qq2Dbj3flOyefq-WO5LjdvL6_Lxaa0FVdD6QEUdUIAR8eDokJprivaqCDQ17RhvlISaO1Zozj4EJi36L1sGJXIdMOn5OnUu7Wt2fdx3PBrko1mvdiYYwacy3F39UNH9vHE7vv0fcA8mF3MDtvWdpgO2TAhJTDNuBjR-Ql1fcq5x_DfTcEc5ZmzPHOWx_8AQpdicQ</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>Stähler, Simon C.</creator><creator>Khan, Amir</creator><creator>Banerdt, W. Bruce</creator><creator>Lognonné, Philippe</creator><creator>Giardini, Domenico</creator><creator>Ceylan, Savas</creator><creator>Drilleau, Mélanie</creator><creator>Duran, A. Cecilia</creator><creator>Garcia, Raphaël F.</creator><creator>Huang, Quancheng</creator><creator>Kim, Doyeon</creator><creator>Lekic, Vedran</creator><creator>Samuel, Henri</creator><creator>Schimmel, Martin</creator><creator>Schmerr, Nicholas</creator><creator>Sollberger, David</creator><creator>Stutzmann, Éléonore</creator><creator>Xu, Zongbo</creator><creator>Antonangeli, Daniele</creator><creator>Charalambous, Constantinos</creator><creator>Davis, Paul M.</creator><creator>Irving, Jessica C. E.</creator><creator>Kawamura, Taichi</creator><creator>Knapmeyer, Martin</creator><creator>Maguire, Ross</creator><creator>Marusiak, Angela G.</creator><creator>Panning, Mark P.</creator><creator>Perrin, Clément</creator><creator>Plesa, Ana-Catalina</creator><creator>Rivoldini, Attilio</creator><creator>Schmelzbach, Cédric</creator><creator>Zenhäusern, Géraldine</creator><creator>Beucler, Éric</creator><creator>Clinton, John</creator><creator>Dahmen, Nikolaj</creator><creator>van Driel, Martin</creator><creator>Gudkova, Tamara</creator><creator>Horleston, Anna</creator><creator>Pike, W. Thomas</creator><creator>Plasman, Matthieu</creator><creator>Smrekar, Suzanne E.</creator><general>American Association for the Advancement of Science (AAAS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5573-7638</orcidid><orcidid>https://orcid.org/0000-0003-4594-2336</orcidid><orcidid>https://orcid.org/0000-0001-9401-4910</orcidid><orcidid>https://orcid.org/0000-0001-8775-075X</orcidid><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0002-0866-8246</orcidid><orcidid>https://orcid.org/0000-0002-9139-3895</orcidid><orcidid>https://orcid.org/0000-0001-6925-1383</orcidid><orcidid>https://orcid.org/0000-0002-9114-6747</orcidid><orcidid>https://orcid.org/0000-0002-1014-920X</orcidid><orcidid>https://orcid.org/0000-0002-3256-1262</orcidid><orcidid>https://orcid.org/0000-0002-4348-7475</orcidid><orcidid>https://orcid.org/0000-0002-8938-4615</orcidid><orcidid>https://orcid.org/0000-0002-7660-6231</orcidid><orcidid>https://orcid.org/0000-0002-6552-6850</orcidid><orcidid>https://orcid.org/0000-0001-5246-5561</orcidid><orcidid>https://orcid.org/0000-0003-3125-1542</orcidid><orcidid>https://orcid.org/0000-0002-6748-6522</orcidid><orcidid>https://orcid.org/0000-0002-2041-3190</orcidid><orcidid>https://orcid.org/0000-0003-4269-930X</orcidid><orcidid>https://orcid.org/0000-0002-7200-5682</orcidid><orcidid>https://orcid.org/0000-0001-6408-6681</orcidid><orcidid>https://orcid.org/0000-0002-7787-4836</orcidid><orcidid>https://orcid.org/0000-0002-8626-9283</orcidid><orcidid>https://orcid.org/0000-0002-0783-2489</orcidid><orcidid>https://orcid.org/0000-0003-0319-2514</orcidid><orcidid>https://orcid.org/0000-0003-2605-4990</orcidid><orcidid>https://orcid.org/0000-0001-9888-4729</orcidid><orcidid>https://orcid.org/0000-0002-0822-8849</orcidid><orcidid>https://orcid.org/0000-0002-5681-5159</orcidid><orcidid>https://orcid.org/0000-0001-5625-9706</orcidid><orcidid>https://orcid.org/0000-0001-8626-2703</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><orcidid>https://orcid.org/0000-0003-2601-4462</orcidid><orcidid>https://orcid.org/0000-0003-1380-8714</orcidid><orcidid>https://orcid.org/0000-0002-5670-6761</orcidid><orcidid>https://orcid.org/0000-0002-5630-2089</orcidid><orcidid>https://orcid.org/0000-0002-4952-5700</orcidid></search><sort><creationdate>20210723</creationdate><title>Seismic detection of the martian core</title><author>Stähler, Simon C. ; Khan, Amir ; Banerdt, W. Bruce ; Lognonné, Philippe ; Giardini, Domenico ; Ceylan, Savas ; Drilleau, Mélanie ; Duran, A. Cecilia ; Garcia, Raphaël F. ; Huang, Quancheng ; Kim, Doyeon ; Lekic, Vedran ; Samuel, Henri ; Schimmel, Martin ; Schmerr, Nicholas ; Sollberger, David ; Stutzmann, Éléonore ; Xu, Zongbo ; Antonangeli, Daniele ; Charalambous, Constantinos ; Davis, Paul M. ; Irving, Jessica C. E. ; Kawamura, Taichi ; Knapmeyer, Martin ; Maguire, Ross ; Marusiak, Angela G. ; Panning, Mark P. ; Perrin, Clément ; Plesa, Ana-Catalina ; Rivoldini, Attilio ; Schmelzbach, Cédric ; Zenhäusern, Géraldine ; Beucler, Éric ; Clinton, John ; Dahmen, Nikolaj ; van Driel, Martin ; Gudkova, Tamara ; Horleston, Anna ; Pike, W. Thomas ; Plasman, Matthieu ; Smrekar, Suzanne E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-d0081c5503ec3f815893941b8f5ed71b2d486017d2b830dff2daedd6b216e29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Earth Sciences</topic><topic>Planetology</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stähler, Simon C.</creatorcontrib><creatorcontrib>Khan, Amir</creatorcontrib><creatorcontrib>Banerdt, W. Bruce</creatorcontrib><creatorcontrib>Lognonné, Philippe</creatorcontrib><creatorcontrib>Giardini, Domenico</creatorcontrib><creatorcontrib>Ceylan, Savas</creatorcontrib><creatorcontrib>Drilleau, Mélanie</creatorcontrib><creatorcontrib>Duran, A. Cecilia</creatorcontrib><creatorcontrib>Garcia, Raphaël F.</creatorcontrib><creatorcontrib>Huang, Quancheng</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Lekic, Vedran</creatorcontrib><creatorcontrib>Samuel, Henri</creatorcontrib><creatorcontrib>Schimmel, Martin</creatorcontrib><creatorcontrib>Schmerr, Nicholas</creatorcontrib><creatorcontrib>Sollberger, David</creatorcontrib><creatorcontrib>Stutzmann, Éléonore</creatorcontrib><creatorcontrib>Xu, Zongbo</creatorcontrib><creatorcontrib>Antonangeli, Daniele</creatorcontrib><creatorcontrib>Charalambous, Constantinos</creatorcontrib><creatorcontrib>Davis, Paul M.</creatorcontrib><creatorcontrib>Irving, Jessica C. E.</creatorcontrib><creatorcontrib>Kawamura, Taichi</creatorcontrib><creatorcontrib>Knapmeyer, Martin</creatorcontrib><creatorcontrib>Maguire, Ross</creatorcontrib><creatorcontrib>Marusiak, Angela G.</creatorcontrib><creatorcontrib>Panning, Mark P.</creatorcontrib><creatorcontrib>Perrin, Clément</creatorcontrib><creatorcontrib>Plesa, Ana-Catalina</creatorcontrib><creatorcontrib>Rivoldini, Attilio</creatorcontrib><creatorcontrib>Schmelzbach, Cédric</creatorcontrib><creatorcontrib>Zenhäusern, Géraldine</creatorcontrib><creatorcontrib>Beucler, Éric</creatorcontrib><creatorcontrib>Clinton, John</creatorcontrib><creatorcontrib>Dahmen, Nikolaj</creatorcontrib><creatorcontrib>van Driel, Martin</creatorcontrib><creatorcontrib>Gudkova, Tamara</creatorcontrib><creatorcontrib>Horleston, Anna</creatorcontrib><creatorcontrib>Pike, W. Thomas</creatorcontrib><creatorcontrib>Plasman, Matthieu</creatorcontrib><creatorcontrib>Smrekar, Suzanne E.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stähler, Simon C.</au><au>Khan, Amir</au><au>Banerdt, W. Bruce</au><au>Lognonné, Philippe</au><au>Giardini, Domenico</au><au>Ceylan, Savas</au><au>Drilleau, Mélanie</au><au>Duran, A. Cecilia</au><au>Garcia, Raphaël F.</au><au>Huang, Quancheng</au><au>Kim, Doyeon</au><au>Lekic, Vedran</au><au>Samuel, Henri</au><au>Schimmel, Martin</au><au>Schmerr, Nicholas</au><au>Sollberger, David</au><au>Stutzmann, Éléonore</au><au>Xu, Zongbo</au><au>Antonangeli, Daniele</au><au>Charalambous, Constantinos</au><au>Davis, Paul M.</au><au>Irving, Jessica C. E.</au><au>Kawamura, Taichi</au><au>Knapmeyer, Martin</au><au>Maguire, Ross</au><au>Marusiak, Angela G.</au><au>Panning, Mark P.</au><au>Perrin, Clément</au><au>Plesa, Ana-Catalina</au><au>Rivoldini, Attilio</au><au>Schmelzbach, Cédric</au><au>Zenhäusern, Géraldine</au><au>Beucler, Éric</au><au>Clinton, John</au><au>Dahmen, Nikolaj</au><au>van Driel, Martin</au><au>Gudkova, Tamara</au><au>Horleston, Anna</au><au>Pike, W. Thomas</au><au>Plasman, Matthieu</au><au>Smrekar, Suzanne E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic detection of the martian core</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2021-07-23</date><risdate>2021</risdate><volume>373</volume><issue>6553</issue><spage>443</spage><epage>448</epage><pages>443-448</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Because of the lack of direct seismic observations, the interior structure of Mars has been a mystery. Khan et al. , Knapmeyer-Endrun et al. , and Stähler et al. used recently detected marsquakes from the seismometer deployed during the InSight mission to map the interior of Mars (see the Perspective by Cottaar and Koelemeijer). Mars likely has a 24- to 72-kilometer-thick crust with a very deep lithosphere close to 500 kilometers. Similar to the Earth, a low-velocity layer probably exists beneath the lithosphere. The crust of Mars is likely highly enriched in radioactive elements that help to heat this layer at the expense of the interior. The core of Mars is liquid and large, ∼1830 kilometers, which means that the mantle has only one rocky layer rather than two like the Earth has. These results provide a preliminary structure of Mars that helps to constrain the different theories explaining the chemistry and internal dynamics of the planet. Science , abf2966, abf8966, abi7730, this issue p. 434 , p. 438 , p. 443 see also abj8914, p. 388 Data from the InSight mission on Mars help constrain the structure and properties of the martian interior. Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.</abstract><pub>American Association for the Advancement of Science (AAAS)</pub><doi>10.1126/science.abi7730</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5573-7638</orcidid><orcidid>https://orcid.org/0000-0003-4594-2336</orcidid><orcidid>https://orcid.org/0000-0001-9401-4910</orcidid><orcidid>https://orcid.org/0000-0001-8775-075X</orcidid><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0002-0866-8246</orcidid><orcidid>https://orcid.org/0000-0002-9139-3895</orcidid><orcidid>https://orcid.org/0000-0001-6925-1383</orcidid><orcidid>https://orcid.org/0000-0002-9114-6747</orcidid><orcidid>https://orcid.org/0000-0002-1014-920X</orcidid><orcidid>https://orcid.org/0000-0002-3256-1262</orcidid><orcidid>https://orcid.org/0000-0002-4348-7475</orcidid><orcidid>https://orcid.org/0000-0002-8938-4615</orcidid><orcidid>https://orcid.org/0000-0002-7660-6231</orcidid><orcidid>https://orcid.org/0000-0002-6552-6850</orcidid><orcidid>https://orcid.org/0000-0001-5246-5561</orcidid><orcidid>https://orcid.org/0000-0003-3125-1542</orcidid><orcidid>https://orcid.org/0000-0002-6748-6522</orcidid><orcidid>https://orcid.org/0000-0002-2041-3190</orcidid><orcidid>https://orcid.org/0000-0003-4269-930X</orcidid><orcidid>https://orcid.org/0000-0002-7200-5682</orcidid><orcidid>https://orcid.org/0000-0001-6408-6681</orcidid><orcidid>https://orcid.org/0000-0002-7787-4836</orcidid><orcidid>https://orcid.org/0000-0002-8626-9283</orcidid><orcidid>https://orcid.org/0000-0002-0783-2489</orcidid><orcidid>https://orcid.org/0000-0003-0319-2514</orcidid><orcidid>https://orcid.org/0000-0003-2605-4990</orcidid><orcidid>https://orcid.org/0000-0001-9888-4729</orcidid><orcidid>https://orcid.org/0000-0002-0822-8849</orcidid><orcidid>https://orcid.org/0000-0002-5681-5159</orcidid><orcidid>https://orcid.org/0000-0001-5625-9706</orcidid><orcidid>https://orcid.org/0000-0001-8626-2703</orcidid><orcidid>https://orcid.org/0000-0002-3548-272X</orcidid><orcidid>https://orcid.org/0000-0003-2601-4462</orcidid><orcidid>https://orcid.org/0000-0003-1380-8714</orcidid><orcidid>https://orcid.org/0000-0002-5670-6761</orcidid><orcidid>https://orcid.org/0000-0002-5630-2089</orcidid><orcidid>https://orcid.org/0000-0002-4952-5700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-07, Vol.373 (6553), p.443-448
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_03365934v1
source American Association for the Advancement of Science
subjects Earth Sciences
Planetology
Sciences of the Universe
title Seismic detection of the martian core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20detection%20of%20the%20martian%20core&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=St%C3%A4hler,%20Simon%20C.&rft.date=2021-07-23&rft.volume=373&rft.issue=6553&rft.spage=443&rft.epage=448&rft.pages=443-448&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abi7730&rft_dat=%3Cproquest_hal_p%3E2566029235%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566029235&rft_id=info:pmid/&rfr_iscdi=true