Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak
For the first time the pellet cycle of a multiple-isotope plasma is successfully reproduced with reduced turbulent transport modelling, within an integrated simulation framework. Future nuclear fusion reactors are likely to be fuelled by cryogenic pellet injection, due to higher penetration and fast...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2021-03, Vol.61 (3), p.36042 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 36042 |
container_title | Nuclear fusion |
container_volume | 61 |
creator | Marin, M. Citrin, J. Garzotti, L. Valovic, M. Bourdelle, C. Camenen, Y. Casson, F.J. Ho, A. Koechl, F. Maslov, M. JET Contributors |
description | For the first time the pellet cycle of a multiple-isotope plasma is successfully reproduced with reduced turbulent transport modelling, within an integrated simulation framework. Future nuclear fusion reactors are likely to be fuelled by cryogenic pellet injection, due to higher penetration and faster response times. Accurate pellet cycle modelling is crucial to assess fuelling efficiency and burn control. In recent Joint European Torus tokamak experiments, deuterium pellets with reactor-relevant deposition characteristics were injected into a pure hydrogen plasma. Measurements of the isotope ratio profile inferred a deuterium penetration time comparable to the energy confinement time. The modelling successfully reproduces the plasma thermodynamic profiles and the fast deuterium penetration timescale. The predictions of the reduced turbulence model QuaLiKiz in the presence of a negative density gradient following pellet deposition are compared with GENE linear and nonlinear higher fidelity modelling. The results are encouraging with regard to reactor fuelling capability and burn control. |
doi_str_mv | 10.1088/1741-4326/abda00 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03364946v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03364946v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-618f6435fc66db0e7c266b1107df9f1977929b49e4f8168c51521141a488c7d33</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwM3plCPXFjh2PVVUoqIilTAyW49g01I2j2EXqv2-iok53-vTudPcQegTyDKQsZyAYZIzmfKarWhNyhSaX6BpNCMllVhRQ3KK7GH8JAQaUTtD3x8GnpvM2a2JIobO4s97bhM3ReBux0V069LbG1REPTXXwtk049bqNXegT3od64Jv2BzctTluL35cbnMJO7_XuHt047aN9-K9T9PWy3CxW2frz9W0xX2cmFyJlHErHGS2c4byuiBUm57wCIKJ20oEUQuayYtIyVwIvzfBEDsP5mpWlETWlU_R03rvVXnV9s9f9UQXdqNV8rcaMUMqZZPwPBpacWdOHGHvrLgNA1ChSjdbUaE2dRdIToF9mig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Marin, M. ; Citrin, J. ; Garzotti, L. ; Valovic, M. ; Bourdelle, C. ; Camenen, Y. ; Casson, F.J. ; Ho, A. ; Koechl, F. ; Maslov, M. ; JET Contributors</creator><creatorcontrib>Marin, M. ; Citrin, J. ; Garzotti, L. ; Valovic, M. ; Bourdelle, C. ; Camenen, Y. ; Casson, F.J. ; Ho, A. ; Koechl, F. ; Maslov, M. ; JET Contributors</creatorcontrib><description>For the first time the pellet cycle of a multiple-isotope plasma is successfully reproduced with reduced turbulent transport modelling, within an integrated simulation framework. Future nuclear fusion reactors are likely to be fuelled by cryogenic pellet injection, due to higher penetration and faster response times. Accurate pellet cycle modelling is crucial to assess fuelling efficiency and burn control. In recent Joint European Torus tokamak experiments, deuterium pellets with reactor-relevant deposition characteristics were injected into a pure hydrogen plasma. Measurements of the isotope ratio profile inferred a deuterium penetration time comparable to the energy confinement time. The modelling successfully reproduces the plasma thermodynamic profiles and the fast deuterium penetration timescale. The predictions of the reduced turbulence model QuaLiKiz in the presence of a negative density gradient following pellet deposition are compared with GENE linear and nonlinear higher fidelity modelling. The results are encouraging with regard to reactor fuelling capability and burn control.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/abda00</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Physics ; Plasma Physics</subject><ispartof>Nuclear fusion, 2021-03, Vol.61 (3), p.36042</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-618f6435fc66db0e7c266b1107df9f1977929b49e4f8168c51521141a488c7d33</citedby><cites>FETCH-LOGICAL-c277t-618f6435fc66db0e7c266b1107df9f1977929b49e4f8168c51521141a488c7d33</cites><orcidid>0000-0002-0855-1056 ; 0000-0001-5371-5876 ; 0000-0002-3796-9814 ; 0000-0001-8007-5501 ; 0000-0003-1361-3722 ; 0000-0001-5107-3531 ; 0000-0002-4096-8978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03364946$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marin, M.</creatorcontrib><creatorcontrib>Citrin, J.</creatorcontrib><creatorcontrib>Garzotti, L.</creatorcontrib><creatorcontrib>Valovic, M.</creatorcontrib><creatorcontrib>Bourdelle, C.</creatorcontrib><creatorcontrib>Camenen, Y.</creatorcontrib><creatorcontrib>Casson, F.J.</creatorcontrib><creatorcontrib>Ho, A.</creatorcontrib><creatorcontrib>Koechl, F.</creatorcontrib><creatorcontrib>Maslov, M.</creatorcontrib><creatorcontrib>JET Contributors</creatorcontrib><title>Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak</title><title>Nuclear fusion</title><description>For the first time the pellet cycle of a multiple-isotope plasma is successfully reproduced with reduced turbulent transport modelling, within an integrated simulation framework. Future nuclear fusion reactors are likely to be fuelled by cryogenic pellet injection, due to higher penetration and faster response times. Accurate pellet cycle modelling is crucial to assess fuelling efficiency and burn control. In recent Joint European Torus tokamak experiments, deuterium pellets with reactor-relevant deposition characteristics were injected into a pure hydrogen plasma. Measurements of the isotope ratio profile inferred a deuterium penetration time comparable to the energy confinement time. The modelling successfully reproduces the plasma thermodynamic profiles and the fast deuterium penetration timescale. The predictions of the reduced turbulence model QuaLiKiz in the presence of a negative density gradient following pellet deposition are compared with GENE linear and nonlinear higher fidelity modelling. The results are encouraging with regard to reactor fuelling capability and burn control.</description><subject>Physics</subject><subject>Plasma Physics</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqWwM3plCPXFjh2PVVUoqIilTAyW49g01I2j2EXqv2-iok53-vTudPcQegTyDKQsZyAYZIzmfKarWhNyhSaX6BpNCMllVhRQ3KK7GH8JAQaUTtD3x8GnpvM2a2JIobO4s97bhM3ReBux0V069LbG1REPTXXwtk049bqNXegT3od64Jv2BzctTluL35cbnMJO7_XuHt047aN9-K9T9PWy3CxW2frz9W0xX2cmFyJlHErHGS2c4byuiBUm57wCIKJ20oEUQuayYtIyVwIvzfBEDsP5mpWlETWlU_R03rvVXnV9s9f9UQXdqNV8rcaMUMqZZPwPBpacWdOHGHvrLgNA1ChSjdbUaE2dRdIToF9mig</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Marin, M.</creator><creator>Citrin, J.</creator><creator>Garzotti, L.</creator><creator>Valovic, M.</creator><creator>Bourdelle, C.</creator><creator>Camenen, Y.</creator><creator>Casson, F.J.</creator><creator>Ho, A.</creator><creator>Koechl, F.</creator><creator>Maslov, M.</creator><creator>JET Contributors</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0855-1056</orcidid><orcidid>https://orcid.org/0000-0001-5371-5876</orcidid><orcidid>https://orcid.org/0000-0002-3796-9814</orcidid><orcidid>https://orcid.org/0000-0001-8007-5501</orcidid><orcidid>https://orcid.org/0000-0003-1361-3722</orcidid><orcidid>https://orcid.org/0000-0001-5107-3531</orcidid><orcidid>https://orcid.org/0000-0002-4096-8978</orcidid></search><sort><creationdate>20210301</creationdate><title>Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak</title><author>Marin, M. ; Citrin, J. ; Garzotti, L. ; Valovic, M. ; Bourdelle, C. ; Camenen, Y. ; Casson, F.J. ; Ho, A. ; Koechl, F. ; Maslov, M. ; JET Contributors</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-618f6435fc66db0e7c266b1107df9f1977929b49e4f8168c51521141a488c7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><topic>Plasma Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin, M.</creatorcontrib><creatorcontrib>Citrin, J.</creatorcontrib><creatorcontrib>Garzotti, L.</creatorcontrib><creatorcontrib>Valovic, M.</creatorcontrib><creatorcontrib>Bourdelle, C.</creatorcontrib><creatorcontrib>Camenen, Y.</creatorcontrib><creatorcontrib>Casson, F.J.</creatorcontrib><creatorcontrib>Ho, A.</creatorcontrib><creatorcontrib>Koechl, F.</creatorcontrib><creatorcontrib>Maslov, M.</creatorcontrib><creatorcontrib>JET Contributors</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marin, M.</au><au>Citrin, J.</au><au>Garzotti, L.</au><au>Valovic, M.</au><au>Bourdelle, C.</au><au>Camenen, Y.</au><au>Casson, F.J.</au><au>Ho, A.</au><au>Koechl, F.</au><au>Maslov, M.</au><au>JET Contributors</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak</atitle><jtitle>Nuclear fusion</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>61</volume><issue>3</issue><spage>36042</spage><pages>36042-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><abstract>For the first time the pellet cycle of a multiple-isotope plasma is successfully reproduced with reduced turbulent transport modelling, within an integrated simulation framework. Future nuclear fusion reactors are likely to be fuelled by cryogenic pellet injection, due to higher penetration and faster response times. Accurate pellet cycle modelling is crucial to assess fuelling efficiency and burn control. In recent Joint European Torus tokamak experiments, deuterium pellets with reactor-relevant deposition characteristics were injected into a pure hydrogen plasma. Measurements of the isotope ratio profile inferred a deuterium penetration time comparable to the energy confinement time. The modelling successfully reproduces the plasma thermodynamic profiles and the fast deuterium penetration timescale. The predictions of the reduced turbulence model QuaLiKiz in the presence of a negative density gradient following pellet deposition are compared with GENE linear and nonlinear higher fidelity modelling. The results are encouraging with regard to reactor fuelling capability and burn control.</abstract><pub>IOP Publishing</pub><doi>10.1088/1741-4326/abda00</doi><orcidid>https://orcid.org/0000-0002-0855-1056</orcidid><orcidid>https://orcid.org/0000-0001-5371-5876</orcidid><orcidid>https://orcid.org/0000-0002-3796-9814</orcidid><orcidid>https://orcid.org/0000-0001-8007-5501</orcidid><orcidid>https://orcid.org/0000-0003-1361-3722</orcidid><orcidid>https://orcid.org/0000-0001-5107-3531</orcidid><orcidid>https://orcid.org/0000-0002-4096-8978</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2021-03, Vol.61 (3), p.36042 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03364946v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Physics Plasma Physics |
title | Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-isotope%20pellet%20cycles%20captured%20by%20turbulent%20transport%20modelling%20in%20the%20JET%20tokamak&rft.jtitle=Nuclear%20fusion&rft.au=Marin,%20M.&rft.date=2021-03-01&rft.volume=61&rft.issue=3&rft.spage=36042&rft.pages=36042-&rft.issn=0029-5515&rft.eissn=1741-4326&rft_id=info:doi/10.1088/1741-4326/abda00&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03364946v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |