Predicting causality ascriptions from background knowledge: model and experimental validation
A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations....
Gespeichert in:
Veröffentlicht in: | International journal of approximate reasoning 2008-08, Vol.48 (3), p.752-765 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 3 |
container_start_page | 752 |
container_title | International journal of approximate reasoning |
container_volume | 48 |
creator | Bonnefon, Jean-François Da Silva Neves, Rui Dubois, Didier Prade, Henri |
description | A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions. |
doi_str_mv | 10.1016/j.ijar.2007.07.003 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03358847v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X07000965</els_id><sourcerecordid>oai_HAL_hal_03358847v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-5emidNP2TipdlUVdY0IOCFwnTNFnT7TZLUlf329uy4lEYGHi832PmEXLJIGbA8usmtg36OAEo4nGAH5EJEwWP0oKzYzIBIUSUM_52Ss5CaAAgL1IxIe_PXtdW9bZbUYWfAVvb7ykG5e22t64L1Hi3oRWq9cq7z66m6859tbpe6Ru6cbVuKQ6i_t5qbze667GluyGkxpE-JycG26AvfveUvN7fvcwX0fLp4XE-W0aKF6KPNBemghyYQVMDVKZSgitTFllepUkGoHgOiaqrMs0r5FmRCERVmoSXmqWo-JRcHXI_sJXb4RD0e-nQysVsKUcNOM-ESIsdG7zJwau8C8Fr8wcwkGOZspFjmXIsU44zwFNye4D08MXOai-DsrpTQ3deq17Wzv6H_wAKHH-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting causality ascriptions from background knowledge: model and experimental validation</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bonnefon, Jean-François ; Da Silva Neves, Rui ; Dubois, Didier ; Prade, Henri</creator><creatorcontrib>Bonnefon, Jean-François ; Da Silva Neves, Rui ; Dubois, Didier ; Prade, Henri</creatorcontrib><description>A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2007.07.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Artificial Intelligence ; Computer Science</subject><ispartof>International journal of approximate reasoning, 2008-08, Vol.48 (3), p.752-765</ispartof><rights>2007 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</citedby><cites>FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</cites><orcidid>0000-0002-4959-188X ; 0000-0002-6505-2536 ; 0000-0003-4586-8527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888613X07000965$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03358847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnefon, Jean-François</creatorcontrib><creatorcontrib>Da Silva Neves, Rui</creatorcontrib><creatorcontrib>Dubois, Didier</creatorcontrib><creatorcontrib>Prade, Henri</creatorcontrib><title>Predicting causality ascriptions from background knowledge: model and experimental validation</title><title>International journal of approximate reasoning</title><description>A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-5emidNP2TipdlUVdY0IOCFwnTNFnT7TZLUlf329uy4lEYGHi832PmEXLJIGbA8usmtg36OAEo4nGAH5EJEwWP0oKzYzIBIUSUM_52Ss5CaAAgL1IxIe_PXtdW9bZbUYWfAVvb7ykG5e22t64L1Hi3oRWq9cq7z66m6859tbpe6Ru6cbVuKQ6i_t5qbze667GluyGkxpE-JycG26AvfveUvN7fvcwX0fLp4XE-W0aKF6KPNBemghyYQVMDVKZSgitTFllepUkGoHgOiaqrMs0r5FmRCERVmoSXmqWo-JRcHXI_sJXb4RD0e-nQysVsKUcNOM-ESIsdG7zJwau8C8Fr8wcwkGOZspFjmXIsU44zwFNye4D08MXOai-DsrpTQ3deq17Wzv6H_wAKHH-5</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Bonnefon, Jean-François</creator><creator>Da Silva Neves, Rui</creator><creator>Dubois, Didier</creator><creator>Prade, Henri</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4959-188X</orcidid><orcidid>https://orcid.org/0000-0002-6505-2536</orcidid><orcidid>https://orcid.org/0000-0003-4586-8527</orcidid></search><sort><creationdate>20080801</creationdate><title>Predicting causality ascriptions from background knowledge: model and experimental validation</title><author>Bonnefon, Jean-François ; Da Silva Neves, Rui ; Dubois, Didier ; Prade, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnefon, Jean-François</creatorcontrib><creatorcontrib>Da Silva Neves, Rui</creatorcontrib><creatorcontrib>Dubois, Didier</creatorcontrib><creatorcontrib>Prade, Henri</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnefon, Jean-François</au><au>Da Silva Neves, Rui</au><au>Dubois, Didier</au><au>Prade, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting causality ascriptions from background knowledge: model and experimental validation</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>48</volume><issue>3</issue><spage>752</spage><epage>765</epage><pages>752-765</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2007.07.003</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4959-188X</orcidid><orcidid>https://orcid.org/0000-0002-6505-2536</orcidid><orcidid>https://orcid.org/0000-0003-4586-8527</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-613X |
ispartof | International journal of approximate reasoning, 2008-08, Vol.48 (3), p.752-765 |
issn | 0888-613X 1873-4731 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03358847v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial Intelligence Computer Science |
title | Predicting causality ascriptions from background knowledge: model and experimental validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20causality%20ascriptions%20from%20background%20knowledge:%20model%20and%20experimental%20validation&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Bonnefon,%20Jean-Fran%C3%A7ois&rft.date=2008-08-01&rft.volume=48&rft.issue=3&rft.spage=752&rft.epage=765&rft.pages=752-765&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2007.07.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03358847v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0888613X07000965&rfr_iscdi=true |