Predicting causality ascriptions from background knowledge: model and experimental validation

A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of approximate reasoning 2008-08, Vol.48 (3), p.752-765
Hauptverfasser: Bonnefon, Jean-François, Da Silva Neves, Rui, Dubois, Didier, Prade, Henri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 3
container_start_page 752
container_title International journal of approximate reasoning
container_volume 48
creator Bonnefon, Jean-François
Da Silva Neves, Rui
Dubois, Didier
Prade, Henri
description A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.
doi_str_mv 10.1016/j.ijar.2007.07.003
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03358847v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X07000965</els_id><sourcerecordid>oai_HAL_hal_03358847v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-5emidNP2TipdlUVdY0IOCFwnTNFnT7TZLUlf329uy4lEYGHi832PmEXLJIGbA8usmtg36OAEo4nGAH5EJEwWP0oKzYzIBIUSUM_52Ss5CaAAgL1IxIe_PXtdW9bZbUYWfAVvb7ykG5e22t64L1Hi3oRWq9cq7z66m6859tbpe6Ru6cbVuKQ6i_t5qbze667GluyGkxpE-JycG26AvfveUvN7fvcwX0fLp4XE-W0aKF6KPNBemghyYQVMDVKZSgitTFllepUkGoHgOiaqrMs0r5FmRCERVmoSXmqWo-JRcHXI_sJXb4RD0e-nQysVsKUcNOM-ESIsdG7zJwau8C8Fr8wcwkGOZspFjmXIsU44zwFNye4D08MXOai-DsrpTQ3deq17Wzv6H_wAKHH-5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting causality ascriptions from background knowledge: model and experimental validation</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bonnefon, Jean-François ; Da Silva Neves, Rui ; Dubois, Didier ; Prade, Henri</creator><creatorcontrib>Bonnefon, Jean-François ; Da Silva Neves, Rui ; Dubois, Didier ; Prade, Henri</creatorcontrib><description>A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2007.07.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Artificial Intelligence ; Computer Science</subject><ispartof>International journal of approximate reasoning, 2008-08, Vol.48 (3), p.752-765</ispartof><rights>2007 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</citedby><cites>FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</cites><orcidid>0000-0002-4959-188X ; 0000-0002-6505-2536 ; 0000-0003-4586-8527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888613X07000965$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03358847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnefon, Jean-François</creatorcontrib><creatorcontrib>Da Silva Neves, Rui</creatorcontrib><creatorcontrib>Dubois, Didier</creatorcontrib><creatorcontrib>Prade, Henri</creatorcontrib><title>Predicting causality ascriptions from background knowledge: model and experimental validation</title><title>International journal of approximate reasoning</title><description>A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-5emidNP2TipdlUVdY0IOCFwnTNFnT7TZLUlf329uy4lEYGHi832PmEXLJIGbA8usmtg36OAEo4nGAH5EJEwWP0oKzYzIBIUSUM_52Ss5CaAAgL1IxIe_PXtdW9bZbUYWfAVvb7ykG5e22t64L1Hi3oRWq9cq7z66m6859tbpe6Ru6cbVuKQ6i_t5qbze667GluyGkxpE-JycG26AvfveUvN7fvcwX0fLp4XE-W0aKF6KPNBemghyYQVMDVKZSgitTFllepUkGoHgOiaqrMs0r5FmRCERVmoSXmqWo-JRcHXI_sJXb4RD0e-nQysVsKUcNOM-ESIsdG7zJwau8C8Fr8wcwkGOZspFjmXIsU44zwFNye4D08MXOai-DsrpTQ3deq17Wzv6H_wAKHH-5</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Bonnefon, Jean-François</creator><creator>Da Silva Neves, Rui</creator><creator>Dubois, Didier</creator><creator>Prade, Henri</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4959-188X</orcidid><orcidid>https://orcid.org/0000-0002-6505-2536</orcidid><orcidid>https://orcid.org/0000-0003-4586-8527</orcidid></search><sort><creationdate>20080801</creationdate><title>Predicting causality ascriptions from background knowledge: model and experimental validation</title><author>Bonnefon, Jean-François ; Da Silva Neves, Rui ; Dubois, Didier ; Prade, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-e38fb0601fafd00bfbc83cf9756b42500c3602cdb946ba35728aac9f239e14ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnefon, Jean-François</creatorcontrib><creatorcontrib>Da Silva Neves, Rui</creatorcontrib><creatorcontrib>Dubois, Didier</creatorcontrib><creatorcontrib>Prade, Henri</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnefon, Jean-François</au><au>Da Silva Neves, Rui</au><au>Dubois, Didier</au><au>Prade, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting causality ascriptions from background knowledge: model and experimental validation</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>48</volume><issue>3</issue><spage>752</spage><epage>765</epage><pages>752-765</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><abstract>A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by non-monotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2007.07.003</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4959-188X</orcidid><orcidid>https://orcid.org/0000-0002-6505-2536</orcidid><orcidid>https://orcid.org/0000-0003-4586-8527</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-613X
ispartof International journal of approximate reasoning, 2008-08, Vol.48 (3), p.752-765
issn 0888-613X
1873-4731
language eng
recordid cdi_hal_primary_oai_HAL_hal_03358847v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial Intelligence
Computer Science
title Predicting causality ascriptions from background knowledge: model and experimental validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20causality%20ascriptions%20from%20background%20knowledge:%20model%20and%20experimental%20validation&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Bonnefon,%20Jean-Fran%C3%A7ois&rft.date=2008-08-01&rft.volume=48&rft.issue=3&rft.spage=752&rft.epage=765&rft.pages=752-765&rft.issn=0888-613X&rft.eissn=1873-4731&rft_id=info:doi/10.1016/j.ijar.2007.07.003&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03358847v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0888613X07000965&rfr_iscdi=true