Targeted CRISPR‐Cas9‐based gene knockouts in the model brown alga Ectocarpus
Summary Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics me...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2021-09, Vol.231 (5), p.2077-2091 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2091 |
---|---|
container_issue | 5 |
container_start_page | 2077 |
container_title | The New phytologist |
container_volume | 231 |
creator | Badis, Yacine Scornet, Delphine Harada, Minori Caillard, Céline Godfroy, Olivier Raphalen, Morgane Gachon, Claire M. M. Coelho, Susana M. Motomura, Taizo Nagasato, Chikako Cock, J. Mark |
description | Summary
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes.
Here, we report that mutations at specific target sites are generated following the introduction of CRISPR‐Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method.
Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2‐fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism.
The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species. |
doi_str_mv | 10.1111/nph.17525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03356727v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557980391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4885-fe46c6794cdfb719bda81671fec3c750e7923d6e9d2d7802c1e623d688e9a93e3</originalsourceid><addsrcrecordid>eNp1kc1KHEEUhYsQiaNmkRcIDdnoorV-uv6WMoyOMJjBKGRXVFffnmnt6RqruhV3PoLP6JOkJmMMBHI3Bw4f597LQegLwcckzUm3Xh4TySn_gEakEDpXhMmPaIQxVbkoxM9dtBfjLcZYc0E_oV1WYCmU0iM0v7ZhAT1U2fjq4sf86vX5ZWyjTlLamNwFdJDddd7d-aGPWdNl_RKyla-gzcrgH7vMtgubTVzvnQ3rIR6gndq2ET6_6T66OZtcj6f57Pv5xfh0lrtCKZ7XUAgnpC5cVZeS6LKyighJanDMSY5BasoqAbqilVSYOgJiYygF2moGbB8dbXOXtjXr0KxseDLeNmZ6OjMbDzPGhaTygST2cMuug78fIPZm1UQHbWs78EM0lDNRKMoLldBv_6C3fghd-iRRXGqFmSZ_l7vgYwxQv19AsNlUYlIl5nclif36ljiUK6jeyT8dJOBkCzw2LTz9P8lczqfbyF8ejZTV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557980391</pqid></control><display><type>article</type><title>Targeted CRISPR‐Cas9‐based gene knockouts in the model brown alga Ectocarpus</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Badis, Yacine ; Scornet, Delphine ; Harada, Minori ; Caillard, Céline ; Godfroy, Olivier ; Raphalen, Morgane ; Gachon, Claire M. M. ; Coelho, Susana M. ; Motomura, Taizo ; Nagasato, Chikako ; Cock, J. Mark</creator><creatorcontrib>Badis, Yacine ; Scornet, Delphine ; Harada, Minori ; Caillard, Céline ; Godfroy, Olivier ; Raphalen, Morgane ; Gachon, Claire M. M. ; Coelho, Susana M. ; Motomura, Taizo ; Nagasato, Chikako ; Cock, J. Mark</creatorcontrib><description>Summary
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes.
Here, we report that mutations at specific target sites are generated following the introduction of CRISPR‐Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method.
Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2‐fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism.
The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17525</identifier><identifier>PMID: 34076889</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adenine ; Algae ; Animals ; Biochemistry, Molecular Biology ; Biology ; brown alga ; Cas9 ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; CRISPR-Cas Systems - genetics ; Economic models ; Ectocarpus ; Eukaryota ; Eukaryotes ; Gene editing ; Gene Knockout Techniques ; Genes ; Genetics ; Genomics ; Life Sciences ; Marine organisms ; Methods ; Microinjection ; Mutation ; Organisms ; Phaeophyceae - genetics ; Phylogeny ; reverse genetics ; Ribonucleoproteins ; transformation</subject><ispartof>The New phytologist, 2021-09, Vol.231 (5), p.2077-2091</ispartof><rights>2021 The Authors © 2021 New Phytologist Foundation</rights><rights>2021 The Authors New Phytologist © 2021 New Phytologist Foundation.</rights><rights>Copyright © 2021 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4885-fe46c6794cdfb719bda81671fec3c750e7923d6e9d2d7802c1e623d688e9a93e3</citedby><cites>FETCH-LOGICAL-c4885-fe46c6794cdfb719bda81671fec3c750e7923d6e9d2d7802c1e623d688e9a93e3</cites><orcidid>0000-0002-2650-0383 ; 0000-0002-3702-7472 ; 0000-0002-9171-2550 ; 0000-0002-8963-8371 ; 0000-0002-1895-8909 ; 0000-0003-1606-3906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34076889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-03356727$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Badis, Yacine</creatorcontrib><creatorcontrib>Scornet, Delphine</creatorcontrib><creatorcontrib>Harada, Minori</creatorcontrib><creatorcontrib>Caillard, Céline</creatorcontrib><creatorcontrib>Godfroy, Olivier</creatorcontrib><creatorcontrib>Raphalen, Morgane</creatorcontrib><creatorcontrib>Gachon, Claire M. M.</creatorcontrib><creatorcontrib>Coelho, Susana M.</creatorcontrib><creatorcontrib>Motomura, Taizo</creatorcontrib><creatorcontrib>Nagasato, Chikako</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><title>Targeted CRISPR‐Cas9‐based gene knockouts in the model brown alga Ectocarpus</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes.
Here, we report that mutations at specific target sites are generated following the introduction of CRISPR‐Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method.
Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2‐fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism.
The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.</description><subject>Adenine</subject><subject>Algae</subject><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biology</subject><subject>brown alga</subject><subject>Cas9</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Economic models</subject><subject>Ectocarpus</subject><subject>Eukaryota</subject><subject>Eukaryotes</subject><subject>Gene editing</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Marine organisms</subject><subject>Methods</subject><subject>Microinjection</subject><subject>Mutation</subject><subject>Organisms</subject><subject>Phaeophyceae - genetics</subject><subject>Phylogeny</subject><subject>reverse genetics</subject><subject>Ribonucleoproteins</subject><subject>transformation</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1KHEEUhYsQiaNmkRcIDdnoorV-uv6WMoyOMJjBKGRXVFffnmnt6RqruhV3PoLP6JOkJmMMBHI3Bw4f597LQegLwcckzUm3Xh4TySn_gEakEDpXhMmPaIQxVbkoxM9dtBfjLcZYc0E_oV1WYCmU0iM0v7ZhAT1U2fjq4sf86vX5ZWyjTlLamNwFdJDddd7d-aGPWdNl_RKyla-gzcrgH7vMtgubTVzvnQ3rIR6gndq2ET6_6T66OZtcj6f57Pv5xfh0lrtCKZ7XUAgnpC5cVZeS6LKyighJanDMSY5BasoqAbqilVSYOgJiYygF2moGbB8dbXOXtjXr0KxseDLeNmZ6OjMbDzPGhaTygST2cMuug78fIPZm1UQHbWs78EM0lDNRKMoLldBv_6C3fghd-iRRXGqFmSZ_l7vgYwxQv19AsNlUYlIl5nclif36ljiUK6jeyT8dJOBkCzw2LTz9P8lczqfbyF8ejZTV</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Badis, Yacine</creator><creator>Scornet, Delphine</creator><creator>Harada, Minori</creator><creator>Caillard, Céline</creator><creator>Godfroy, Olivier</creator><creator>Raphalen, Morgane</creator><creator>Gachon, Claire M. M.</creator><creator>Coelho, Susana M.</creator><creator>Motomura, Taizo</creator><creator>Nagasato, Chikako</creator><creator>Cock, J. Mark</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-3702-7472</orcidid><orcidid>https://orcid.org/0000-0002-9171-2550</orcidid><orcidid>https://orcid.org/0000-0002-8963-8371</orcidid><orcidid>https://orcid.org/0000-0002-1895-8909</orcidid><orcidid>https://orcid.org/0000-0003-1606-3906</orcidid></search><sort><creationdate>202109</creationdate><title>Targeted CRISPR‐Cas9‐based gene knockouts in the model brown alga Ectocarpus</title><author>Badis, Yacine ; Scornet, Delphine ; Harada, Minori ; Caillard, Céline ; Godfroy, Olivier ; Raphalen, Morgane ; Gachon, Claire M. M. ; Coelho, Susana M. ; Motomura, Taizo ; Nagasato, Chikako ; Cock, J. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4885-fe46c6794cdfb719bda81671fec3c750e7923d6e9d2d7802c1e623d688e9a93e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenine</topic><topic>Algae</topic><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biology</topic><topic>brown alga</topic><topic>Cas9</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Economic models</topic><topic>Ectocarpus</topic><topic>Eukaryota</topic><topic>Eukaryotes</topic><topic>Gene editing</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Marine organisms</topic><topic>Methods</topic><topic>Microinjection</topic><topic>Mutation</topic><topic>Organisms</topic><topic>Phaeophyceae - genetics</topic><topic>Phylogeny</topic><topic>reverse genetics</topic><topic>Ribonucleoproteins</topic><topic>transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badis, Yacine</creatorcontrib><creatorcontrib>Scornet, Delphine</creatorcontrib><creatorcontrib>Harada, Minori</creatorcontrib><creatorcontrib>Caillard, Céline</creatorcontrib><creatorcontrib>Godfroy, Olivier</creatorcontrib><creatorcontrib>Raphalen, Morgane</creatorcontrib><creatorcontrib>Gachon, Claire M. M.</creatorcontrib><creatorcontrib>Coelho, Susana M.</creatorcontrib><creatorcontrib>Motomura, Taizo</creatorcontrib><creatorcontrib>Nagasato, Chikako</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badis, Yacine</au><au>Scornet, Delphine</au><au>Harada, Minori</au><au>Caillard, Céline</au><au>Godfroy, Olivier</au><au>Raphalen, Morgane</au><au>Gachon, Claire M. M.</au><au>Coelho, Susana M.</au><au>Motomura, Taizo</au><au>Nagasato, Chikako</au><au>Cock, J. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted CRISPR‐Cas9‐based gene knockouts in the model brown alga Ectocarpus</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-09</date><risdate>2021</risdate><volume>231</volume><issue>5</issue><spage>2077</spage><epage>2091</epage><pages>2077-2091</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes.
Here, we report that mutations at specific target sites are generated following the introduction of CRISPR‐Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method.
Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2‐fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism.
The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34076889</pmid><doi>10.1111/nph.17525</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-3702-7472</orcidid><orcidid>https://orcid.org/0000-0002-9171-2550</orcidid><orcidid>https://orcid.org/0000-0002-8963-8371</orcidid><orcidid>https://orcid.org/0000-0002-1895-8909</orcidid><orcidid>https://orcid.org/0000-0003-1606-3906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2021-09, Vol.231 (5), p.2077-2091 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03356727v1 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Adenine Algae Animals Biochemistry, Molecular Biology Biology brown alga Cas9 Clustered Regularly Interspaced Short Palindromic Repeats CRISPR CRISPR-Cas Systems - genetics Economic models Ectocarpus Eukaryota Eukaryotes Gene editing Gene Knockout Techniques Genes Genetics Genomics Life Sciences Marine organisms Methods Microinjection Mutation Organisms Phaeophyceae - genetics Phylogeny reverse genetics Ribonucleoproteins transformation |
title | Targeted CRISPR‐Cas9‐based gene knockouts in the model brown alga Ectocarpus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20CRISPR%E2%80%90Cas9%E2%80%90based%20gene%20knockouts%20in%20the%20model%20brown%20alga%20Ectocarpus&rft.jtitle=The%20New%20phytologist&rft.au=Badis,%20Yacine&rft.date=2021-09&rft.volume=231&rft.issue=5&rft.spage=2077&rft.epage=2091&rft.pages=2077-2091&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17525&rft_dat=%3Cproquest_hal_p%3E2557980391%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557980391&rft_id=info:pmid/34076889&rfr_iscdi=true |