Uniform bipartition in the population protocol model with arbitrary graphs

In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2021-11, Vol.892, p.187-207
Hauptverfasser: Yasumi, Hiroto, Ooshita, Fukuhito, Inoue, Michiko, Tixeuil, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue
container_start_page 187
container_title Theoretical computer science
container_volume 892
creator Yasumi, Hiroto
Ooshita, Fukuhito
Inoue, Michiko
Tixeuil, Sébastien
description In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.
doi_str_mv 10.1016/j.tcs.2021.09.020
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03355603v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439752100548X</els_id><sourcerecordid>oai_HAL_hal_03355603v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-cd29eefcbbc979d3096a143ae39bc45a453fd39c51b95205a75807ec8c6199f53</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwANxy5dDiJE07i9M0AQNN4sLOUZqmNFPXVEkA8fZ0DHHEF0vW_1n2R8g1g5wBK293eTIx58BZDpgDhxMyY4sKM86xOCUzEFBkAit5Ti5i3MFUsipn5Hk7uNaHPa3dqENyyfmBuoGmztLRj--9_pmMwSdvfE_3vrE9_XSpozrULgUdvuhb0GMXL8lZq_tor377nGwf7l9X62zz8vi0Wm4yI3iZMtNwtLY1dW2wwkYAlpoVQluBtSmkLqRoG4FGsholB6kruYDKmoUpGWIrxZzcHPd2uldjcPvpBOW1U-vlRh1mIISUJYgPNmXZMWuCjzHY9g9goA7i1E5N4tRBnAJUk7iJuTsydnriw9mgonF2MLZxwZqkGu_-ob8BEgh2vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform bipartition in the population protocol model with arbitrary graphs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yasumi, Hiroto ; Ooshita, Fukuhito ; Inoue, Michiko ; Tixeuil, Sébastien</creator><creatorcontrib>Yasumi, Hiroto ; Ooshita, Fukuhito ; Inoue, Michiko ; Tixeuil, Sébastien</creatorcontrib><description>In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2021.09.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational Complexity ; Computer Science ; Data Structures and Algorithms ; Distributed protocol ; Distributed, Parallel, and Cluster Computing ; Population protocol ; Robotics ; Uniform bipartition</subject><ispartof>Theoretical computer science, 2021-11, Vol.892, p.187-207</ispartof><rights>2021 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-cd29eefcbbc979d3096a143ae39bc45a453fd39c51b95205a75807ec8c6199f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030439752100548X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03355603$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yasumi, Hiroto</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><creatorcontrib>Inoue, Michiko</creatorcontrib><creatorcontrib>Tixeuil, Sébastien</creatorcontrib><title>Uniform bipartition in the population protocol model with arbitrary graphs</title><title>Theoretical computer science</title><description>In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.</description><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Distributed protocol</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Population protocol</subject><subject>Robotics</subject><subject>Uniform bipartition</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwANxy5dDiJE07i9M0AQNN4sLOUZqmNFPXVEkA8fZ0DHHEF0vW_1n2R8g1g5wBK293eTIx58BZDpgDhxMyY4sKM86xOCUzEFBkAit5Ti5i3MFUsipn5Hk7uNaHPa3dqENyyfmBuoGmztLRj--9_pmMwSdvfE_3vrE9_XSpozrULgUdvuhb0GMXL8lZq_tor377nGwf7l9X62zz8vi0Wm4yI3iZMtNwtLY1dW2wwkYAlpoVQluBtSmkLqRoG4FGsholB6kruYDKmoUpGWIrxZzcHPd2uldjcPvpBOW1U-vlRh1mIISUJYgPNmXZMWuCjzHY9g9goA7i1E5N4tRBnAJUk7iJuTsydnriw9mgonF2MLZxwZqkGu_-ob8BEgh2vQ</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Yasumi, Hiroto</creator><creator>Ooshita, Fukuhito</creator><creator>Inoue, Michiko</creator><creator>Tixeuil, Sébastien</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20211112</creationdate><title>Uniform bipartition in the population protocol model with arbitrary graphs</title><author>Yasumi, Hiroto ; Ooshita, Fukuhito ; Inoue, Michiko ; Tixeuil, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-cd29eefcbbc979d3096a143ae39bc45a453fd39c51b95205a75807ec8c6199f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Distributed protocol</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Population protocol</topic><topic>Robotics</topic><topic>Uniform bipartition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasumi, Hiroto</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><creatorcontrib>Inoue, Michiko</creatorcontrib><creatorcontrib>Tixeuil, Sébastien</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasumi, Hiroto</au><au>Ooshita, Fukuhito</au><au>Inoue, Michiko</au><au>Tixeuil, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform bipartition in the population protocol model with arbitrary graphs</atitle><jtitle>Theoretical computer science</jtitle><date>2021-11-12</date><risdate>2021</risdate><volume>892</volume><spage>187</spage><epage>207</epage><pages>187-207</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2021.09.020</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2021-11, Vol.892, p.187-207
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_03355603v1
source Elsevier ScienceDirect Journals Complete
subjects Computational Complexity
Computer Science
Data Structures and Algorithms
Distributed protocol
Distributed, Parallel, and Cluster Computing
Population protocol
Robotics
Uniform bipartition
title Uniform bipartition in the population protocol model with arbitrary graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20bipartition%20in%20the%20population%20protocol%20model%20with%20arbitrary%20graphs&rft.jtitle=Theoretical%20computer%20science&rft.au=Yasumi,%20Hiroto&rft.date=2021-11-12&rft.volume=892&rft.spage=187&rft.epage=207&rft.pages=187-207&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2021.09.020&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03355603v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S030439752100548X&rfr_iscdi=true