Uniform bipartition in the population protocol model with arbitrary graphs
In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2021-11, Vol.892, p.187-207 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | |
container_start_page | 187 |
container_title | Theoretical computer science |
container_volume | 892 |
creator | Yasumi, Hiroto Ooshita, Fukuhito Inoue, Michiko Tixeuil, Sébastien |
description | In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight. |
doi_str_mv | 10.1016/j.tcs.2021.09.020 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03355603v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439752100548X</els_id><sourcerecordid>oai_HAL_hal_03355603v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-cd29eefcbbc979d3096a143ae39bc45a453fd39c51b95205a75807ec8c6199f53</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwANxy5dDiJE07i9M0AQNN4sLOUZqmNFPXVEkA8fZ0DHHEF0vW_1n2R8g1g5wBK293eTIx58BZDpgDhxMyY4sKM86xOCUzEFBkAit5Ti5i3MFUsipn5Hk7uNaHPa3dqENyyfmBuoGmztLRj--9_pmMwSdvfE_3vrE9_XSpozrULgUdvuhb0GMXL8lZq_tor377nGwf7l9X62zz8vi0Wm4yI3iZMtNwtLY1dW2wwkYAlpoVQluBtSmkLqRoG4FGsholB6kruYDKmoUpGWIrxZzcHPd2uldjcPvpBOW1U-vlRh1mIISUJYgPNmXZMWuCjzHY9g9goA7i1E5N4tRBnAJUk7iJuTsydnriw9mgonF2MLZxwZqkGu_-ob8BEgh2vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform bipartition in the population protocol model with arbitrary graphs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yasumi, Hiroto ; Ooshita, Fukuhito ; Inoue, Michiko ; Tixeuil, Sébastien</creator><creatorcontrib>Yasumi, Hiroto ; Ooshita, Fukuhito ; Inoue, Michiko ; Tixeuil, Sébastien</creatorcontrib><description>In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2021.09.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computational Complexity ; Computer Science ; Data Structures and Algorithms ; Distributed protocol ; Distributed, Parallel, and Cluster Computing ; Population protocol ; Robotics ; Uniform bipartition</subject><ispartof>Theoretical computer science, 2021-11, Vol.892, p.187-207</ispartof><rights>2021 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-cd29eefcbbc979d3096a143ae39bc45a453fd39c51b95205a75807ec8c6199f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030439752100548X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-03355603$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yasumi, Hiroto</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><creatorcontrib>Inoue, Michiko</creatorcontrib><creatorcontrib>Tixeuil, Sébastien</creatorcontrib><title>Uniform bipartition in the population protocol model with arbitrary graphs</title><title>Theoretical computer science</title><description>In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.</description><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Distributed protocol</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Population protocol</subject><subject>Robotics</subject><subject>Uniform bipartition</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwANxy5dDiJE07i9M0AQNN4sLOUZqmNFPXVEkA8fZ0DHHEF0vW_1n2R8g1g5wBK293eTIx58BZDpgDhxMyY4sKM86xOCUzEFBkAit5Ti5i3MFUsipn5Hk7uNaHPa3dqENyyfmBuoGmztLRj--9_pmMwSdvfE_3vrE9_XSpozrULgUdvuhb0GMXL8lZq_tor377nGwf7l9X62zz8vi0Wm4yI3iZMtNwtLY1dW2wwkYAlpoVQluBtSmkLqRoG4FGsholB6kruYDKmoUpGWIrxZzcHPd2uldjcPvpBOW1U-vlRh1mIISUJYgPNmXZMWuCjzHY9g9goA7i1E5N4tRBnAJUk7iJuTsydnriw9mgonF2MLZxwZqkGu_-ob8BEgh2vQ</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Yasumi, Hiroto</creator><creator>Ooshita, Fukuhito</creator><creator>Inoue, Michiko</creator><creator>Tixeuil, Sébastien</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20211112</creationdate><title>Uniform bipartition in the population protocol model with arbitrary graphs</title><author>Yasumi, Hiroto ; Ooshita, Fukuhito ; Inoue, Michiko ; Tixeuil, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-cd29eefcbbc979d3096a143ae39bc45a453fd39c51b95205a75807ec8c6199f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Distributed protocol</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Population protocol</topic><topic>Robotics</topic><topic>Uniform bipartition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasumi, Hiroto</creatorcontrib><creatorcontrib>Ooshita, Fukuhito</creatorcontrib><creatorcontrib>Inoue, Michiko</creatorcontrib><creatorcontrib>Tixeuil, Sébastien</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasumi, Hiroto</au><au>Ooshita, Fukuhito</au><au>Inoue, Michiko</au><au>Tixeuil, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform bipartition in the population protocol model with arbitrary graphs</atitle><jtitle>Theoretical computer science</jtitle><date>2021-11-12</date><risdate>2021</risdate><volume>892</volume><spage>187</spage><epage>207</epage><pages>187-207</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2021.09.020</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2021-11, Vol.892, p.187-207 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03355603v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computational Complexity Computer Science Data Structures and Algorithms Distributed protocol Distributed, Parallel, and Cluster Computing Population protocol Robotics Uniform bipartition |
title | Uniform bipartition in the population protocol model with arbitrary graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20bipartition%20in%20the%20population%20protocol%20model%20with%20arbitrary%20graphs&rft.jtitle=Theoretical%20computer%20science&rft.au=Yasumi,%20Hiroto&rft.date=2021-11-12&rft.volume=892&rft.spage=187&rft.epage=207&rft.pages=187-207&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2021.09.020&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03355603v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S030439752100548X&rfr_iscdi=true |