Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences
Recent studies demonstrate a strong influence of soil age on long-term silicon (Si) dynamics in terrestrial ecosystems, but how variation in ecosystem water balance and soil parent material impact this trajectory is unknown. We addressed this by studying a 2-million-year dune chronosequence in south...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2021-12, Vol.156 (3), p.335-350 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 3 |
container_start_page | 335 |
container_title | Biogeochemistry |
container_volume | 156 |
creator | de Tombeur, Félix Cornelis, Jean-Thomas Laliberté, Etienne Lambers, Hans Mahy, Grégory Faucon, Michel-Pierre Turner, Benjamin L. |
description | Recent studies demonstrate a strong influence of soil age on long-term silicon (Si) dynamics in terrestrial ecosystems, but how variation in ecosystem water balance and soil parent material impact this trajectory is unknown. We addressed this by studying a 2-million-year dune chronosequence in southwestern Australia characterized by a positive water balance (+ 50 mm year
−1
) and a lower carbonate concentration in the parent sand (5%) compared with two chronosequences already characterized (− 900 and − 750 mm year
−1
; 88 and 74%). We sampled soils from the progressive and retrogressive phases of ecosystem development to quantify pedogenic reactive Si (extracted in ammonium oxalate and oxalic acid), phytoliths (biogenic Si), and plant-available Si (extracted in dilute CaCl
2
). Silicon mobilization was buffered by carbonate in the early stages of the two carbonate-rich drier chronosequences, as previously highlighted, but not in the carbonate-poor wetter chronosequence. Reactive pedogenic Si and plant-available Si did not peak at intermediate stages in the carbonate-poor wetter chronosequence, where almost no clay formation occurred, as it did in the carbonate-rich drier chronosequences during clay formation after carbonate loss. This is probably due to a combination of lower content of weatherable minerals in the soil parent material and higher weathering rates. Phytolith stocks were similar across the three chronosequences, suggesting that a climate-driven increase in biomass and associated phytolith production in wetter sites counterbalance the higher phytolith dissolution rates and physical translocation. Together, these results demonstrate that the initial carbonate concentration in the soil parent material and subsequent mineralogical evolution drive long-term soil Si dynamics, and suggest a significant influence of climate-induced variation in biomass production on the Si biological feedback loop, even in old and highly desilicated environments. |
doi_str_mv | 10.1007/s10533-021-00849-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03353779v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594894514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d8693ff6a111a17104a5dd6afd0eeb5b0d080d6b810ae208f2e8d7270e3b360d3</originalsourceid><addsrcrecordid>eNp9kUtrHDEQhEWwIevHH8hJkFMOSrpHo3nkZowdGxZyicE3oRn17MrMSBtp7GUP-e_Wekxyy6mg-6uioBj7hPAVAepvCUFJKaBAAdCUrdh_YCtUtRQK1eMJWwFWjShUJT-ys5SeAKCtQa7Yn_tpZ_qZh4FTH9IhzTTxvZkp8s6MxvfEjbc8BTfynYnkZz4dv86MPHie3Oj6rPbgzeT69J07n9xmOyc-xDDxeRuJ-Bj8RmTTxPttDD4k-v1MOTpdsNPBjIku3_WcPdze_Lq-E-ufP-6vr9aiL7GdhW2qVg5DZRDRYI1QGmVtZQYLRJ3qwEIDtuoaBEMFNENBja2LGkh2sgIrz9mXJXdrRr2LbjLxoINx-u5qrY83kFLJum5fMLOfF3YXQ66ZZv0UnqPP9XSh2rJpS4VlpoqF6mNIKdLwNxZBHyfRyyQ6T6LfJtH7bJKLKWXYbyj-i_6P6xXi4ZEe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594894514</pqid></control><display><type>article</type><title>Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences</title><source>SpringerNature Complete Journals</source><creator>de Tombeur, Félix ; Cornelis, Jean-Thomas ; Laliberté, Etienne ; Lambers, Hans ; Mahy, Grégory ; Faucon, Michel-Pierre ; Turner, Benjamin L.</creator><creatorcontrib>de Tombeur, Félix ; Cornelis, Jean-Thomas ; Laliberté, Etienne ; Lambers, Hans ; Mahy, Grégory ; Faucon, Michel-Pierre ; Turner, Benjamin L.</creatorcontrib><description>Recent studies demonstrate a strong influence of soil age on long-term silicon (Si) dynamics in terrestrial ecosystems, but how variation in ecosystem water balance and soil parent material impact this trajectory is unknown. We addressed this by studying a 2-million-year dune chronosequence in southwestern Australia characterized by a positive water balance (+ 50 mm year
−1
) and a lower carbonate concentration in the parent sand (5%) compared with two chronosequences already characterized (− 900 and − 750 mm year
−1
; 88 and 74%). We sampled soils from the progressive and retrogressive phases of ecosystem development to quantify pedogenic reactive Si (extracted in ammonium oxalate and oxalic acid), phytoliths (biogenic Si), and plant-available Si (extracted in dilute CaCl
2
). Silicon mobilization was buffered by carbonate in the early stages of the two carbonate-rich drier chronosequences, as previously highlighted, but not in the carbonate-poor wetter chronosequence. Reactive pedogenic Si and plant-available Si did not peak at intermediate stages in the carbonate-poor wetter chronosequence, where almost no clay formation occurred, as it did in the carbonate-rich drier chronosequences during clay formation after carbonate loss. This is probably due to a combination of lower content of weatherable minerals in the soil parent material and higher weathering rates. Phytolith stocks were similar across the three chronosequences, suggesting that a climate-driven increase in biomass and associated phytolith production in wetter sites counterbalance the higher phytolith dissolution rates and physical translocation. Together, these results demonstrate that the initial carbonate concentration in the soil parent material and subsequent mineralogical evolution drive long-term soil Si dynamics, and suggest a significant influence of climate-induced variation in biomass production on the Si biological feedback loop, even in old and highly desilicated environments.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-021-00849-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Age ; Ammonium ; Ammonium compounds ; Biogeochemistry ; Biogeosciences ; Biomass ; Calcium chloride ; Carbonates ; Clay ; Clay minerals ; Climate ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Ecological succession ; Ecosystems ; Environmental Chemistry ; Environmental Sciences ; Feedback loops ; Influence ; Life Sciences ; Mineralogy ; Minerals ; Oxalic acid ; Plant extracts ; Quartz ; Sciences of the Universe ; Silicon ; Soil ; Soil dynamics ; Soil water ; Soils ; Stocks ; Terrestrial ecosystems ; Translocation ; Water balance</subject><ispartof>Biogeochemistry, 2021-12, Vol.156 (3), p.335-350</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d8693ff6a111a17104a5dd6afd0eeb5b0d080d6b810ae208f2e8d7270e3b360d3</citedby><cites>FETCH-LOGICAL-c419t-d8693ff6a111a17104a5dd6afd0eeb5b0d080d6b810ae208f2e8d7270e3b360d3</cites><orcidid>0000-0002-6012-8458 ; 0000-0002-6585-0722 ; 0000-0002-3167-2622 ; 0000-0001-5448-7932 ; 0000-0003-0205-7345 ; 0000-0003-3094-8620 ; 0000-0002-4118-2272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10533-021-00849-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10533-021-00849-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03353779$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Tombeur, Félix</creatorcontrib><creatorcontrib>Cornelis, Jean-Thomas</creatorcontrib><creatorcontrib>Laliberté, Etienne</creatorcontrib><creatorcontrib>Lambers, Hans</creatorcontrib><creatorcontrib>Mahy, Grégory</creatorcontrib><creatorcontrib>Faucon, Michel-Pierre</creatorcontrib><creatorcontrib>Turner, Benjamin L.</creatorcontrib><title>Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Recent studies demonstrate a strong influence of soil age on long-term silicon (Si) dynamics in terrestrial ecosystems, but how variation in ecosystem water balance and soil parent material impact this trajectory is unknown. We addressed this by studying a 2-million-year dune chronosequence in southwestern Australia characterized by a positive water balance (+ 50 mm year
−1
) and a lower carbonate concentration in the parent sand (5%) compared with two chronosequences already characterized (− 900 and − 750 mm year
−1
; 88 and 74%). We sampled soils from the progressive and retrogressive phases of ecosystem development to quantify pedogenic reactive Si (extracted in ammonium oxalate and oxalic acid), phytoliths (biogenic Si), and plant-available Si (extracted in dilute CaCl
2
). Silicon mobilization was buffered by carbonate in the early stages of the two carbonate-rich drier chronosequences, as previously highlighted, but not in the carbonate-poor wetter chronosequence. Reactive pedogenic Si and plant-available Si did not peak at intermediate stages in the carbonate-poor wetter chronosequence, where almost no clay formation occurred, as it did in the carbonate-rich drier chronosequences during clay formation after carbonate loss. This is probably due to a combination of lower content of weatherable minerals in the soil parent material and higher weathering rates. Phytolith stocks were similar across the three chronosequences, suggesting that a climate-driven increase in biomass and associated phytolith production in wetter sites counterbalance the higher phytolith dissolution rates and physical translocation. Together, these results demonstrate that the initial carbonate concentration in the soil parent material and subsequent mineralogical evolution drive long-term soil Si dynamics, and suggest a significant influence of climate-induced variation in biomass production on the Si biological feedback loop, even in old and highly desilicated environments.</description><subject>Age</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Biogeochemistry</subject><subject>Biogeosciences</subject><subject>Biomass</subject><subject>Calcium chloride</subject><subject>Carbonates</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Climate</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecological succession</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Environmental Sciences</subject><subject>Feedback loops</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Oxalic acid</subject><subject>Plant extracts</subject><subject>Quartz</subject><subject>Sciences of the Universe</subject><subject>Silicon</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stocks</subject><subject>Terrestrial ecosystems</subject><subject>Translocation</subject><subject>Water balance</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtrHDEQhEWwIevHH8hJkFMOSrpHo3nkZowdGxZyicE3oRn17MrMSBtp7GUP-e_Wekxyy6mg-6uioBj7hPAVAepvCUFJKaBAAdCUrdh_YCtUtRQK1eMJWwFWjShUJT-ys5SeAKCtQa7Yn_tpZ_qZh4FTH9IhzTTxvZkp8s6MxvfEjbc8BTfynYnkZz4dv86MPHie3Oj6rPbgzeT69J07n9xmOyc-xDDxeRuJ-Bj8RmTTxPttDD4k-v1MOTpdsNPBjIku3_WcPdze_Lq-E-ufP-6vr9aiL7GdhW2qVg5DZRDRYI1QGmVtZQYLRJ3qwEIDtuoaBEMFNENBja2LGkh2sgIrz9mXJXdrRr2LbjLxoINx-u5qrY83kFLJum5fMLOfF3YXQ66ZZv0UnqPP9XSh2rJpS4VlpoqF6mNIKdLwNxZBHyfRyyQ6T6LfJtH7bJKLKWXYbyj-i_6P6xXi4ZEe</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>de Tombeur, Félix</creator><creator>Cornelis, Jean-Thomas</creator><creator>Laliberté, Etienne</creator><creator>Lambers, Hans</creator><creator>Mahy, Grégory</creator><creator>Faucon, Michel-Pierre</creator><creator>Turner, Benjamin L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6012-8458</orcidid><orcidid>https://orcid.org/0000-0002-6585-0722</orcidid><orcidid>https://orcid.org/0000-0002-3167-2622</orcidid><orcidid>https://orcid.org/0000-0001-5448-7932</orcidid><orcidid>https://orcid.org/0000-0003-0205-7345</orcidid><orcidid>https://orcid.org/0000-0003-3094-8620</orcidid><orcidid>https://orcid.org/0000-0002-4118-2272</orcidid></search><sort><creationdate>20211201</creationdate><title>Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences</title><author>de Tombeur, Félix ; Cornelis, Jean-Thomas ; Laliberté, Etienne ; Lambers, Hans ; Mahy, Grégory ; Faucon, Michel-Pierre ; Turner, Benjamin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d8693ff6a111a17104a5dd6afd0eeb5b0d080d6b810ae208f2e8d7270e3b360d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Biogeochemistry</topic><topic>Biogeosciences</topic><topic>Biomass</topic><topic>Calcium chloride</topic><topic>Carbonates</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Climate</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecological succession</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Environmental Sciences</topic><topic>Feedback loops</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Oxalic acid</topic><topic>Plant extracts</topic><topic>Quartz</topic><topic>Sciences of the Universe</topic><topic>Silicon</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stocks</topic><topic>Terrestrial ecosystems</topic><topic>Translocation</topic><topic>Water balance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Tombeur, Félix</creatorcontrib><creatorcontrib>Cornelis, Jean-Thomas</creatorcontrib><creatorcontrib>Laliberté, Etienne</creatorcontrib><creatorcontrib>Lambers, Hans</creatorcontrib><creatorcontrib>Mahy, Grégory</creatorcontrib><creatorcontrib>Faucon, Michel-Pierre</creatorcontrib><creatorcontrib>Turner, Benjamin L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Tombeur, Félix</au><au>Cornelis, Jean-Thomas</au><au>Laliberté, Etienne</au><au>Lambers, Hans</au><au>Mahy, Grégory</au><au>Faucon, Michel-Pierre</au><au>Turner, Benjamin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>156</volume><issue>3</issue><spage>335</spage><epage>350</epage><pages>335-350</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Recent studies demonstrate a strong influence of soil age on long-term silicon (Si) dynamics in terrestrial ecosystems, but how variation in ecosystem water balance and soil parent material impact this trajectory is unknown. We addressed this by studying a 2-million-year dune chronosequence in southwestern Australia characterized by a positive water balance (+ 50 mm year
−1
) and a lower carbonate concentration in the parent sand (5%) compared with two chronosequences already characterized (− 900 and − 750 mm year
−1
; 88 and 74%). We sampled soils from the progressive and retrogressive phases of ecosystem development to quantify pedogenic reactive Si (extracted in ammonium oxalate and oxalic acid), phytoliths (biogenic Si), and plant-available Si (extracted in dilute CaCl
2
). Silicon mobilization was buffered by carbonate in the early stages of the two carbonate-rich drier chronosequences, as previously highlighted, but not in the carbonate-poor wetter chronosequence. Reactive pedogenic Si and plant-available Si did not peak at intermediate stages in the carbonate-poor wetter chronosequence, where almost no clay formation occurred, as it did in the carbonate-rich drier chronosequences during clay formation after carbonate loss. This is probably due to a combination of lower content of weatherable minerals in the soil parent material and higher weathering rates. Phytolith stocks were similar across the three chronosequences, suggesting that a climate-driven increase in biomass and associated phytolith production in wetter sites counterbalance the higher phytolith dissolution rates and physical translocation. Together, these results demonstrate that the initial carbonate concentration in the soil parent material and subsequent mineralogical evolution drive long-term soil Si dynamics, and suggest a significant influence of climate-induced variation in biomass production on the Si biological feedback loop, even in old and highly desilicated environments.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10533-021-00849-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6012-8458</orcidid><orcidid>https://orcid.org/0000-0002-6585-0722</orcidid><orcidid>https://orcid.org/0000-0002-3167-2622</orcidid><orcidid>https://orcid.org/0000-0001-5448-7932</orcidid><orcidid>https://orcid.org/0000-0003-0205-7345</orcidid><orcidid>https://orcid.org/0000-0003-3094-8620</orcidid><orcidid>https://orcid.org/0000-0002-4118-2272</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2021-12, Vol.156 (3), p.335-350 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03353779v1 |
source | SpringerNature Complete Journals |
subjects | Age Ammonium Ammonium compounds Biogeochemistry Biogeosciences Biomass Calcium chloride Carbonates Clay Clay minerals Climate Dynamics Earth and Environmental Science Earth Sciences Ecological succession Ecosystems Environmental Chemistry Environmental Sciences Feedback loops Influence Life Sciences Mineralogy Minerals Oxalic acid Plant extracts Quartz Sciences of the Universe Silicon Soil Soil dynamics Soil water Soils Stocks Terrestrial ecosystems Translocation Water balance |
title | Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20ecosystem%20water%20balance%20and%20soil%20parent%20material%20on%20silicon%20dynamics:%20insights%20from%20three%20long-term%20chronosequences&rft.jtitle=Biogeochemistry&rft.au=de%20Tombeur,%20F%C3%A9lix&rft.date=2021-12-01&rft.volume=156&rft.issue=3&rft.spage=335&rft.epage=350&rft.pages=335-350&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-021-00849-w&rft_dat=%3Cproquest_hal_p%3E2594894514%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594894514&rft_id=info:pmid/&rfr_iscdi=true |