Microstructure and properties of steel-aluminum Cold Metal Transfer joints
1 mm thick sheets of 6016-T4 aluminum alloy and Zn coated steel were joined in a lap configuration using the Cold Metal Transfer (CMT) welding process with an Al-5Si filler metal and different powers and welding speeds. The formed reaction layer ensuring the bonding between the aluminum melting zone...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2020-03, Vol.277, p.116414, Article 116414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116414 |
container_title | Journal of materials processing technology |
container_volume | 277 |
creator | Mezrag, B. Deschaux-Beaume, F. Sabatier, L. Wattrisse, B. Benachour, M. |
description | 1 mm thick sheets of 6016-T4 aluminum alloy and Zn coated steel were joined in a lap configuration using the Cold Metal Transfer (CMT) welding process with an Al-5Si filler metal and different powers and welding speeds. The formed reaction layer ensuring the bonding between the aluminum melting zone and the steel sheet doesn’t exceed 10 μm in thickness, and is composed of an iron-rich Fe-Al intermetallic on the steel side, and a Fe-Al-Si ternary compound on the aluminum weld side. The current waveform producing the lowest mean electrical power gives the most regular welds with lowest porosity in the melting zone. By optimizing the welding speed with this current waveform, the strength of the assembly under monotonic shear-tensile loading can reach 70% of that of the aluminum base material, and its lifetime under cyclic tensile loading exceeds 104 cycles for a maximal linear loading of 98 N mm−1 and 107 cycles for a maximal linear loading of 42 N mm−1. |
doi_str_mv | 10.1016/j.jmatprotec.2019.116414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03345667v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013619303863</els_id><sourcerecordid>2330966974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-b9c8360421974aa1a14a65846827721ff02a348c39d59ddfb51db2de4b6d46b23</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEuXnHSxx4pDitV0nOZYKKKiISzlbjr0RjtKk2E4l3p5UQXDktNJqZjTzEUKBzYGBumvmzc6kfegT2jlnUM4BlAR5QmZQ5CKTeS5PyYyVXGYMhDonFzE2jEHOimJGXl69DX1MYbBpCEhN5-gYtseQPEba1zQmxDYz7bDz3bCjq7519BWTaek2mC7WGGjT-y7FK3JWmzbi9c-9JO-PD9vVOtu8PT2vlpvMSsFSVpW2EIpJDmUujQED0qhFIVXB85xDXTNuhCysKN2idK6uFuAq7lBWyklVcXFJbqfcD9PqffA7E750b7xeLzf6-GNCyIVS-QFG7c2kHTd9DhiTbvohdGM9zYVgpVJjiVFVTKojihiw_o0Fpo-UdaP_KOsjZT1RHq33kxXHxQePQUfrsbPofECbtOv9_yHfJaKKIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330966974</pqid></control><display><type>article</type><title>Microstructure and properties of steel-aluminum Cold Metal Transfer joints</title><source>Elsevier ScienceDirect Journals</source><creator>Mezrag, B. ; Deschaux-Beaume, F. ; Sabatier, L. ; Wattrisse, B. ; Benachour, M.</creator><creatorcontrib>Mezrag, B. ; Deschaux-Beaume, F. ; Sabatier, L. ; Wattrisse, B. ; Benachour, M.</creatorcontrib><description>1 mm thick sheets of 6016-T4 aluminum alloy and Zn coated steel were joined in a lap configuration using the Cold Metal Transfer (CMT) welding process with an Al-5Si filler metal and different powers and welding speeds. The formed reaction layer ensuring the bonding between the aluminum melting zone and the steel sheet doesn’t exceed 10 μm in thickness, and is composed of an iron-rich Fe-Al intermetallic on the steel side, and a Fe-Al-Si ternary compound on the aluminum weld side. The current waveform producing the lowest mean electrical power gives the most regular welds with lowest porosity in the melting zone. By optimizing the welding speed with this current waveform, the strength of the assembly under monotonic shear-tensile loading can reach 70% of that of the aluminum base material, and its lifetime under cyclic tensile loading exceeds 104 cycles for a maximal linear loading of 98 N mm−1 and 107 cycles for a maximal linear loading of 42 N mm−1.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2019.116414</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Aluminum base alloys ; Arc welding ; Cold welding ; Dissimilar metal joining ; Engineering Sciences ; Filler metals ; Mechanical behavior ; Mechanics ; Metal sheets ; Microstructure ; Porosity ; Reaction layer ; Silicon compounds ; Steel ; Structural mechanics ; Waveforms ; Welded joints</subject><ispartof>Journal of materials processing technology, 2020-03, Vol.277, p.116414, Article 116414</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-b9c8360421974aa1a14a65846827721ff02a348c39d59ddfb51db2de4b6d46b23</citedby><cites>FETCH-LOGICAL-c430t-b9c8360421974aa1a14a65846827721ff02a348c39d59ddfb51db2de4b6d46b23</cites><orcidid>0000-0002-9712-9016 ; 0000-0002-9775-3791 ; 0009-0002-6639-8069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924013619303863$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03345667$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mezrag, B.</creatorcontrib><creatorcontrib>Deschaux-Beaume, F.</creatorcontrib><creatorcontrib>Sabatier, L.</creatorcontrib><creatorcontrib>Wattrisse, B.</creatorcontrib><creatorcontrib>Benachour, M.</creatorcontrib><title>Microstructure and properties of steel-aluminum Cold Metal Transfer joints</title><title>Journal of materials processing technology</title><description>1 mm thick sheets of 6016-T4 aluminum alloy and Zn coated steel were joined in a lap configuration using the Cold Metal Transfer (CMT) welding process with an Al-5Si filler metal and different powers and welding speeds. The formed reaction layer ensuring the bonding between the aluminum melting zone and the steel sheet doesn’t exceed 10 μm in thickness, and is composed of an iron-rich Fe-Al intermetallic on the steel side, and a Fe-Al-Si ternary compound on the aluminum weld side. The current waveform producing the lowest mean electrical power gives the most regular welds with lowest porosity in the melting zone. By optimizing the welding speed with this current waveform, the strength of the assembly under monotonic shear-tensile loading can reach 70% of that of the aluminum base material, and its lifetime under cyclic tensile loading exceeds 104 cycles for a maximal linear loading of 98 N mm−1 and 107 cycles for a maximal linear loading of 42 N mm−1.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Arc welding</subject><subject>Cold welding</subject><subject>Dissimilar metal joining</subject><subject>Engineering Sciences</subject><subject>Filler metals</subject><subject>Mechanical behavior</subject><subject>Mechanics</subject><subject>Metal sheets</subject><subject>Microstructure</subject><subject>Porosity</subject><subject>Reaction layer</subject><subject>Silicon compounds</subject><subject>Steel</subject><subject>Structural mechanics</subject><subject>Waveforms</subject><subject>Welded joints</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEuXnHSxx4pDitV0nOZYKKKiISzlbjr0RjtKk2E4l3p5UQXDktNJqZjTzEUKBzYGBumvmzc6kfegT2jlnUM4BlAR5QmZQ5CKTeS5PyYyVXGYMhDonFzE2jEHOimJGXl69DX1MYbBpCEhN5-gYtseQPEba1zQmxDYz7bDz3bCjq7519BWTaek2mC7WGGjT-y7FK3JWmzbi9c-9JO-PD9vVOtu8PT2vlpvMSsFSVpW2EIpJDmUujQED0qhFIVXB85xDXTNuhCysKN2idK6uFuAq7lBWyklVcXFJbqfcD9PqffA7E750b7xeLzf6-GNCyIVS-QFG7c2kHTd9DhiTbvohdGM9zYVgpVJjiVFVTKojihiw_o0Fpo-UdaP_KOsjZT1RHq33kxXHxQePQUfrsbPofECbtOv9_yHfJaKKIw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Mezrag, B.</creator><creator>Deschaux-Beaume, F.</creator><creator>Sabatier, L.</creator><creator>Wattrisse, B.</creator><creator>Benachour, M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9712-9016</orcidid><orcidid>https://orcid.org/0000-0002-9775-3791</orcidid><orcidid>https://orcid.org/0009-0002-6639-8069</orcidid></search><sort><creationdate>20200301</creationdate><title>Microstructure and properties of steel-aluminum Cold Metal Transfer joints</title><author>Mezrag, B. ; Deschaux-Beaume, F. ; Sabatier, L. ; Wattrisse, B. ; Benachour, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-b9c8360421974aa1a14a65846827721ff02a348c39d59ddfb51db2de4b6d46b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Arc welding</topic><topic>Cold welding</topic><topic>Dissimilar metal joining</topic><topic>Engineering Sciences</topic><topic>Filler metals</topic><topic>Mechanical behavior</topic><topic>Mechanics</topic><topic>Metal sheets</topic><topic>Microstructure</topic><topic>Porosity</topic><topic>Reaction layer</topic><topic>Silicon compounds</topic><topic>Steel</topic><topic>Structural mechanics</topic><topic>Waveforms</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezrag, B.</creatorcontrib><creatorcontrib>Deschaux-Beaume, F.</creatorcontrib><creatorcontrib>Sabatier, L.</creatorcontrib><creatorcontrib>Wattrisse, B.</creatorcontrib><creatorcontrib>Benachour, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezrag, B.</au><au>Deschaux-Beaume, F.</au><au>Sabatier, L.</au><au>Wattrisse, B.</au><au>Benachour, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and properties of steel-aluminum Cold Metal Transfer joints</atitle><jtitle>Journal of materials processing technology</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>277</volume><spage>116414</spage><pages>116414-</pages><artnum>116414</artnum><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>1 mm thick sheets of 6016-T4 aluminum alloy and Zn coated steel were joined in a lap configuration using the Cold Metal Transfer (CMT) welding process with an Al-5Si filler metal and different powers and welding speeds. The formed reaction layer ensuring the bonding between the aluminum melting zone and the steel sheet doesn’t exceed 10 μm in thickness, and is composed of an iron-rich Fe-Al intermetallic on the steel side, and a Fe-Al-Si ternary compound on the aluminum weld side. The current waveform producing the lowest mean electrical power gives the most regular welds with lowest porosity in the melting zone. By optimizing the welding speed with this current waveform, the strength of the assembly under monotonic shear-tensile loading can reach 70% of that of the aluminum base material, and its lifetime under cyclic tensile loading exceeds 104 cycles for a maximal linear loading of 98 N mm−1 and 107 cycles for a maximal linear loading of 42 N mm−1.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2019.116414</doi><orcidid>https://orcid.org/0000-0002-9712-9016</orcidid><orcidid>https://orcid.org/0000-0002-9775-3791</orcidid><orcidid>https://orcid.org/0009-0002-6639-8069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2020-03, Vol.277, p.116414, Article 116414 |
issn | 0924-0136 1873-4774 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03345667v1 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum Aluminum base alloys Arc welding Cold welding Dissimilar metal joining Engineering Sciences Filler metals Mechanical behavior Mechanics Metal sheets Microstructure Porosity Reaction layer Silicon compounds Steel Structural mechanics Waveforms Welded joints |
title | Microstructure and properties of steel-aluminum Cold Metal Transfer joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20properties%20of%20steel-aluminum%20Cold%20Metal%20Transfer%20joints&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Mezrag,%20B.&rft.date=2020-03-01&rft.volume=277&rft.spage=116414&rft.pages=116414-&rft.artnum=116414&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2019.116414&rft_dat=%3Cproquest_hal_p%3E2330966974%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330966974&rft_id=info:pmid/&rft_els_id=S0924013619303863&rfr_iscdi=true |