Active site rearrangement and structural divergence in prokaryotic respiratory oxidases

Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-10, Vol.366 (6461), p.100-104
Hauptverfasser: Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., Nikolaev, A., Meier-Credo, J., Melin, F., Miyoshi, H., Gennis, R. B., Sakamoto, J., Langer, J. D., Hellwig, P., Kühlbrandt, W., Michel, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 6461
container_start_page 100
container_title Science (American Association for the Advancement of Science)
container_volume 366
creator Safarian, S.
Hahn, A.
Mills, D. J.
Radloff, M.
Eisinger, M. L.
Nikolaev, A.
Meier-Credo, J.
Melin, F.
Miyoshi, H.
Gennis, R. B.
Sakamoto, J.
Langer, J. D.
Hellwig, P.
Kühlbrandt, W.
Michel, H.
description Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of the Escherichia coli cytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.
doi_str_mv 10.1126/science.aay0967
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03341532v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26843583</jstor_id><sourcerecordid>26843583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-c616b1d6e273a71ae4949e2298456fa695f9c161bc2220dc685432ec687fbcac3</originalsourceid><addsrcrecordid>eNpdkUFv2zAMhYVhRZt1Pe-0wcAu68EtJcqydQyKdi0QoJcWOwqKTHfKHDuT5GL591WQLIeeCJAfyUc-xr5wuOJcqOvoPA2Orqzdglb1BzbjoKtSC8CPbAaAqmygrs7YpxhXALmm8ZSdIVcgEfSM_Zq75F-piD5REciGYIcXWtOQCju0RUxhcmkKti_ajIWX3bbCD8UmjH9s2I7Ju9wWNz7YNIZtMf7zrY0UP7OTzvaRLg7xnD3f3T7d3JeLx58PN_NF6WQjU-kUV0veKhI12ppbklpqEkI3slKdVbrqtOOKL50QAlqnmkqioBzrbumsw3N2uZ_72_ZmE_w6izKj9eZ-vjC7HCBKXqF45Zn9sWez-L8TxWTWPjrqezvQOEUjECqQGmqV0e_v0NU4hSFfsqNAKeQImbreUy6MMQbqjgo4mJ0_5uCPOfiTO74d5k7LNbVH_r8hGfi6B1Yx__NYF6qRWDWIby6ol10</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300663130</pqid></control><display><type>article</type><title>Active site rearrangement and structural divergence in prokaryotic respiratory oxidases</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Safarian, S. ; Hahn, A. ; Mills, D. J. ; Radloff, M. ; Eisinger, M. L. ; Nikolaev, A. ; Meier-Credo, J. ; Melin, F. ; Miyoshi, H. ; Gennis, R. B. ; Sakamoto, J. ; Langer, J. D. ; Hellwig, P. ; Kühlbrandt, W. ; Michel, H.</creator><creatorcontrib>Safarian, S. ; Hahn, A. ; Mills, D. J. ; Radloff, M. ; Eisinger, M. L. ; Nikolaev, A. ; Meier-Credo, J. ; Melin, F. ; Miyoshi, H. ; Gennis, R. B. ; Sakamoto, J. ; Langer, J. D. ; Hellwig, P. ; Kühlbrandt, W. ; Michel, H.</creatorcontrib><description>Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of the Escherichia coli cytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aay0967</identifier><identifier>PMID: 31604309</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Antiinfectives and antibacterials ; Antimicrobial agents ; Bacteria ; Binding sites ; Biochemistry, Molecular Biology ; Catalytic Domain ; Channels ; Coenzyme Q8 ; Cofactors ; Coliforms ; Cryoelectron Microscopy ; Cytochrome ; Cytochrome b Group - chemistry ; Cytochrome bd ; Cytochrome c ; Cytochromes ; Divergence ; Drug development ; E coli ; Electron microscopy ; Electron transport ; Electron Transport Chain Complex Proteins - chemistry ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Heme ; Heme - chemistry ; Homology ; Hydroquinone ; Life Sciences ; Microscopy ; Mitochondria ; Models, Molecular ; Oxidase ; Oxidation-Reduction ; Oxidoreductases - chemistry ; Oxygen ; Oxygen - chemistry ; Protein Structure, Quaternary ; Protein Subunits - chemistry ; Protons ; Quinol oxidase ; Reduction ; Relocation ; Structure-function relationships ; Terminal oxidase ; Ubiquinone ; Ubiquinone - chemistry ; Water</subject><ispartof>Science (American Association for the Advancement of Science), 2019-10, Vol.366 (6461), p.100-104</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-c616b1d6e273a71ae4949e2298456fa695f9c161bc2220dc685432ec687fbcac3</citedby><cites>FETCH-LOGICAL-c484t-c616b1d6e273a71ae4949e2298456fa695f9c161bc2220dc685432ec687fbcac3</cites><orcidid>0000-0003-0904-1119 ; 0000-0003-4118-5438 ; 0000-0002-2013-4810 ; 0000-0001-6294-5163 ; 0000-0003-0934-913X ; 0000-0001-6557-7028 ; 0000-0002-1792-554X ; 0000-0003-4351-7846 ; 0000-0001-7543-1778 ; 0000-0002-5190-577X ; 0000-0003-0827-5642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31604309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03341532$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Safarian, S.</creatorcontrib><creatorcontrib>Hahn, A.</creatorcontrib><creatorcontrib>Mills, D. J.</creatorcontrib><creatorcontrib>Radloff, M.</creatorcontrib><creatorcontrib>Eisinger, M. L.</creatorcontrib><creatorcontrib>Nikolaev, A.</creatorcontrib><creatorcontrib>Meier-Credo, J.</creatorcontrib><creatorcontrib>Melin, F.</creatorcontrib><creatorcontrib>Miyoshi, H.</creatorcontrib><creatorcontrib>Gennis, R. B.</creatorcontrib><creatorcontrib>Sakamoto, J.</creatorcontrib><creatorcontrib>Langer, J. D.</creatorcontrib><creatorcontrib>Hellwig, P.</creatorcontrib><creatorcontrib>Kühlbrandt, W.</creatorcontrib><creatorcontrib>Michel, H.</creatorcontrib><title>Active site rearrangement and structural divergence in prokaryotic respiratory oxidases</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of the Escherichia coli cytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.</description><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Catalytic Domain</subject><subject>Channels</subject><subject>Coenzyme Q8</subject><subject>Cofactors</subject><subject>Coliforms</subject><subject>Cryoelectron Microscopy</subject><subject>Cytochrome</subject><subject>Cytochrome b Group - chemistry</subject><subject>Cytochrome bd</subject><subject>Cytochrome c</subject><subject>Cytochromes</subject><subject>Divergence</subject><subject>Drug development</subject><subject>E coli</subject><subject>Electron microscopy</subject><subject>Electron transport</subject><subject>Electron Transport Chain Complex Proteins - chemistry</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Heme</subject><subject>Heme - chemistry</subject><subject>Homology</subject><subject>Hydroquinone</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Models, Molecular</subject><subject>Oxidase</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Subunits - chemistry</subject><subject>Protons</subject><subject>Quinol oxidase</subject><subject>Reduction</subject><subject>Relocation</subject><subject>Structure-function relationships</subject><subject>Terminal oxidase</subject><subject>Ubiquinone</subject><subject>Ubiquinone - chemistry</subject><subject>Water</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv2zAMhYVhRZt1Pe-0wcAu68EtJcqydQyKdi0QoJcWOwqKTHfKHDuT5GL591WQLIeeCJAfyUc-xr5wuOJcqOvoPA2Orqzdglb1BzbjoKtSC8CPbAaAqmygrs7YpxhXALmm8ZSdIVcgEfSM_Zq75F-piD5REciGYIcXWtOQCju0RUxhcmkKti_ajIWX3bbCD8UmjH9s2I7Ju9wWNz7YNIZtMf7zrY0UP7OTzvaRLg7xnD3f3T7d3JeLx58PN_NF6WQjU-kUV0veKhI12ppbklpqEkI3slKdVbrqtOOKL50QAlqnmkqioBzrbumsw3N2uZ_72_ZmE_w6izKj9eZ-vjC7HCBKXqF45Zn9sWez-L8TxWTWPjrqezvQOEUjECqQGmqV0e_v0NU4hSFfsqNAKeQImbreUy6MMQbqjgo4mJ0_5uCPOfiTO74d5k7LNbVH_r8hGfi6B1Yx__NYF6qRWDWIby6ol10</recordid><startdate>20191004</startdate><enddate>20191004</enddate><creator>Safarian, S.</creator><creator>Hahn, A.</creator><creator>Mills, D. J.</creator><creator>Radloff, M.</creator><creator>Eisinger, M. L.</creator><creator>Nikolaev, A.</creator><creator>Meier-Credo, J.</creator><creator>Melin, F.</creator><creator>Miyoshi, H.</creator><creator>Gennis, R. B.</creator><creator>Sakamoto, J.</creator><creator>Langer, J. D.</creator><creator>Hellwig, P.</creator><creator>Kühlbrandt, W.</creator><creator>Michel, H.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0904-1119</orcidid><orcidid>https://orcid.org/0000-0003-4118-5438</orcidid><orcidid>https://orcid.org/0000-0002-2013-4810</orcidid><orcidid>https://orcid.org/0000-0001-6294-5163</orcidid><orcidid>https://orcid.org/0000-0003-0934-913X</orcidid><orcidid>https://orcid.org/0000-0001-6557-7028</orcidid><orcidid>https://orcid.org/0000-0002-1792-554X</orcidid><orcidid>https://orcid.org/0000-0003-4351-7846</orcidid><orcidid>https://orcid.org/0000-0001-7543-1778</orcidid><orcidid>https://orcid.org/0000-0002-5190-577X</orcidid><orcidid>https://orcid.org/0000-0003-0827-5642</orcidid></search><sort><creationdate>20191004</creationdate><title>Active site rearrangement and structural divergence in prokaryotic respiratory oxidases</title><author>Safarian, S. ; Hahn, A. ; Mills, D. J. ; Radloff, M. ; Eisinger, M. L. ; Nikolaev, A. ; Meier-Credo, J. ; Melin, F. ; Miyoshi, H. ; Gennis, R. B. ; Sakamoto, J. ; Langer, J. D. ; Hellwig, P. ; Kühlbrandt, W. ; Michel, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-c616b1d6e273a71ae4949e2298456fa695f9c161bc2220dc685432ec687fbcac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Catalytic Domain</topic><topic>Channels</topic><topic>Coenzyme Q8</topic><topic>Cofactors</topic><topic>Coliforms</topic><topic>Cryoelectron Microscopy</topic><topic>Cytochrome</topic><topic>Cytochrome b Group - chemistry</topic><topic>Cytochrome bd</topic><topic>Cytochrome c</topic><topic>Cytochromes</topic><topic>Divergence</topic><topic>Drug development</topic><topic>E coli</topic><topic>Electron microscopy</topic><topic>Electron transport</topic><topic>Electron Transport Chain Complex Proteins - chemistry</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Heme</topic><topic>Heme - chemistry</topic><topic>Homology</topic><topic>Hydroquinone</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Models, Molecular</topic><topic>Oxidase</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Subunits - chemistry</topic><topic>Protons</topic><topic>Quinol oxidase</topic><topic>Reduction</topic><topic>Relocation</topic><topic>Structure-function relationships</topic><topic>Terminal oxidase</topic><topic>Ubiquinone</topic><topic>Ubiquinone - chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safarian, S.</creatorcontrib><creatorcontrib>Hahn, A.</creatorcontrib><creatorcontrib>Mills, D. J.</creatorcontrib><creatorcontrib>Radloff, M.</creatorcontrib><creatorcontrib>Eisinger, M. L.</creatorcontrib><creatorcontrib>Nikolaev, A.</creatorcontrib><creatorcontrib>Meier-Credo, J.</creatorcontrib><creatorcontrib>Melin, F.</creatorcontrib><creatorcontrib>Miyoshi, H.</creatorcontrib><creatorcontrib>Gennis, R. B.</creatorcontrib><creatorcontrib>Sakamoto, J.</creatorcontrib><creatorcontrib>Langer, J. D.</creatorcontrib><creatorcontrib>Hellwig, P.</creatorcontrib><creatorcontrib>Kühlbrandt, W.</creatorcontrib><creatorcontrib>Michel, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safarian, S.</au><au>Hahn, A.</au><au>Mills, D. J.</au><au>Radloff, M.</au><au>Eisinger, M. L.</au><au>Nikolaev, A.</au><au>Meier-Credo, J.</au><au>Melin, F.</au><au>Miyoshi, H.</au><au>Gennis, R. B.</au><au>Sakamoto, J.</au><au>Langer, J. D.</au><au>Hellwig, P.</au><au>Kühlbrandt, W.</au><au>Michel, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active site rearrangement and structural divergence in prokaryotic respiratory oxidases</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-10-04</date><risdate>2019</risdate><volume>366</volume><issue>6461</issue><spage>100</spage><epage>104</epage><pages>100-104</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of the Escherichia coli cytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31604309</pmid><doi>10.1126/science.aay0967</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0904-1119</orcidid><orcidid>https://orcid.org/0000-0003-4118-5438</orcidid><orcidid>https://orcid.org/0000-0002-2013-4810</orcidid><orcidid>https://orcid.org/0000-0001-6294-5163</orcidid><orcidid>https://orcid.org/0000-0003-0934-913X</orcidid><orcidid>https://orcid.org/0000-0001-6557-7028</orcidid><orcidid>https://orcid.org/0000-0002-1792-554X</orcidid><orcidid>https://orcid.org/0000-0003-4351-7846</orcidid><orcidid>https://orcid.org/0000-0001-7543-1778</orcidid><orcidid>https://orcid.org/0000-0002-5190-577X</orcidid><orcidid>https://orcid.org/0000-0003-0827-5642</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-10, Vol.366 (6461), p.100-104
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_03341532v1
source American Association for the Advancement of Science; MEDLINE
subjects Antiinfectives and antibacterials
Antimicrobial agents
Bacteria
Binding sites
Biochemistry, Molecular Biology
Catalytic Domain
Channels
Coenzyme Q8
Cofactors
Coliforms
Cryoelectron Microscopy
Cytochrome
Cytochrome b Group - chemistry
Cytochrome bd
Cytochrome c
Cytochromes
Divergence
Drug development
E coli
Electron microscopy
Electron transport
Electron Transport Chain Complex Proteins - chemistry
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Heme
Heme - chemistry
Homology
Hydroquinone
Life Sciences
Microscopy
Mitochondria
Models, Molecular
Oxidase
Oxidation-Reduction
Oxidoreductases - chemistry
Oxygen
Oxygen - chemistry
Protein Structure, Quaternary
Protein Subunits - chemistry
Protons
Quinol oxidase
Reduction
Relocation
Structure-function relationships
Terminal oxidase
Ubiquinone
Ubiquinone - chemistry
Water
title Active site rearrangement and structural divergence in prokaryotic respiratory oxidases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20site%20rearrangement%20and%20structural%20divergence%20in%20prokaryotic%20respiratory%20oxidases&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Safarian,%20S.&rft.date=2019-10-04&rft.volume=366&rft.issue=6461&rft.spage=100&rft.epage=104&rft.pages=100-104&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aay0967&rft_dat=%3Cjstor_hal_p%3E26843583%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300663130&rft_id=info:pmid/31604309&rft_jstor_id=26843583&rfr_iscdi=true