Quantitative evaluation of human and climate forcing on erosion in the alpine Critical Zone over the last 2000 years
Soil erosion is one of the main environmental threats affecting the Critical Zone (CZ) and thus ecosystem services and human societies. Through time, physical erosion is linked to both climate variations and the landscape evolution under long-term human pressures. In mountainous areas where erosion...
Gespeichert in:
Veröffentlicht in: | Quaternary science reviews 2021-09, Vol.268, p.107127, Article 107127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107127 |
container_title | Quaternary science reviews |
container_volume | 268 |
creator | Rapuc, William Bouchez, Julien Sabatier, Pierre Genuite, Kim Poulenard, Jérôme Gaillardet, Jérôme Arnaud, Fabien |
description | Soil erosion is one of the main environmental threats affecting the Critical Zone (CZ) and thus ecosystem services and human societies. Through time, physical erosion is linked to both climate variations and the landscape evolution under long-term human pressures. In mountainous areas where erosion is highest a combination of large spatial and temporal approaches allows to assess the effect of these forcing factors on erosion rates. Here, we apply a retrospective approach based on lake sediments to reconstruct the long-term evolution of erosion in alpine landscapes. Lake Iseo in the Italian Alps acts as a natural sink for all the erosion products from a large catchment (1777 km2). This catchment is representative of the southern Italian Alps, where Holocene human activity and climate fluctuations are well known. The approach combines a source-to-sink method, using isotopic geochemistry (εNd, 87Sr/86Sr) associated to a multiproxy study of a lacustrine sediment section covering the last 2000 years. The applied method allows us to disentangle the role of climate and land use as erosion forcing factors through their differential impact on the various rock types present in the catchment. Indeed, the high-altitude part of the Iseo catchment, where glacier advances and retreats drive the erosion, presents isotopic signature different from those of the sedimentary rocks located in the lower part of the catchment, where both human activities and precipitations impacted erosion through time. A chronicle of glacial erosion over the last 2000 years was produced. Once the climatic trend was highlighted, the signal of erosion of sedimentary rocks was investigated to understand the influence of humans. From the Roman Period to the Industrial Age several periods of deforestation and increased human pressure were documented. The past sediment yield inferred for sedimentary rocks exhibits the highest values (>80 t km−2. yr−1) at periods of intense human practices. Hence, since the late Roman Period, human activities seem to be the dominant forcing factor of the physical erosion in mountainous environment of northern Italy. This study presents the first reconstruction through time of sediment yield derived from lake sediments associated with sediment sources identification and quantitative evaluation of the CZ erosion drivers.
•Soil erosion is one of the main environmental threats affecting human societies.•Need of quantitative evaluation of soil loss over large and long sca |
doi_str_mv | 10.1016/j.quascirev.2021.107127 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03340528v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0277379121003346</els_id><sourcerecordid>S0277379121003346</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-7d63602e10b0fa0024eefbe9339ea46a10f4b9844d00d7b33d2f3608812b4ec3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFY_g3v1kDr7p930WIpaoSBCD-JlmSQTuyVN6mYb6Ld3Y6RXTzs7894M78fYvYCJADF73E2-j9jmzlM3kSBF7BohzQUbidSoRE_NxyUbgTQmUWYurtlN2-4AYCpTOWLh_Yh1cAGD64hTh9Uxlk3Nm5Jvj3usOdYFzyu3x0C8bHzu6i8e5-Sbtte5moctcawOria-9C64HCv-2cRf05H_nVbYBi7jUX4i9O0tuyqxaunu7x2zzfPTZrlK1m8vr8vFOkEtRUhMMVMzkCQggxIBpCYqM5orNSfUMxRQ6myeal0AFCZTqpBlNKSpkJmmXI3Zw7B2i5U9-BjBn2yDzq4Wa9v3QCndc-hE1JpBm8dcrafybBBge852Z8-cbc_ZDpyjczE4KSbpHHkbRVTnVERpHmzRuH93_ABd3osz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative evaluation of human and climate forcing on erosion in the alpine Critical Zone over the last 2000 years</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Rapuc, William ; Bouchez, Julien ; Sabatier, Pierre ; Genuite, Kim ; Poulenard, Jérôme ; Gaillardet, Jérôme ; Arnaud, Fabien</creator><creatorcontrib>Rapuc, William ; Bouchez, Julien ; Sabatier, Pierre ; Genuite, Kim ; Poulenard, Jérôme ; Gaillardet, Jérôme ; Arnaud, Fabien</creatorcontrib><description>Soil erosion is one of the main environmental threats affecting the Critical Zone (CZ) and thus ecosystem services and human societies. Through time, physical erosion is linked to both climate variations and the landscape evolution under long-term human pressures. In mountainous areas where erosion is highest a combination of large spatial and temporal approaches allows to assess the effect of these forcing factors on erosion rates. Here, we apply a retrospective approach based on lake sediments to reconstruct the long-term evolution of erosion in alpine landscapes. Lake Iseo in the Italian Alps acts as a natural sink for all the erosion products from a large catchment (1777 km2). This catchment is representative of the southern Italian Alps, where Holocene human activity and climate fluctuations are well known. The approach combines a source-to-sink method, using isotopic geochemistry (εNd, 87Sr/86Sr) associated to a multiproxy study of a lacustrine sediment section covering the last 2000 years. The applied method allows us to disentangle the role of climate and land use as erosion forcing factors through their differential impact on the various rock types present in the catchment. Indeed, the high-altitude part of the Iseo catchment, where glacier advances and retreats drive the erosion, presents isotopic signature different from those of the sedimentary rocks located in the lower part of the catchment, where both human activities and precipitations impacted erosion through time. A chronicle of glacial erosion over the last 2000 years was produced. Once the climatic trend was highlighted, the signal of erosion of sedimentary rocks was investigated to understand the influence of humans. From the Roman Period to the Industrial Age several periods of deforestation and increased human pressure were documented. The past sediment yield inferred for sedimentary rocks exhibits the highest values (>80 t km−2. yr−1) at periods of intense human practices. Hence, since the late Roman Period, human activities seem to be the dominant forcing factor of the physical erosion in mountainous environment of northern Italy. This study presents the first reconstruction through time of sediment yield derived from lake sediments associated with sediment sources identification and quantitative evaluation of the CZ erosion drivers.
•Soil erosion is one of the main environmental threats affecting human societies.•Need of quantitative evaluation of soil loss over large and long scales.•Here we combine source-to-sink and retrospective approach on lake sediments.•This allows to quantify climate and human forcing on erosion over the last 2 ka.•Human activities led to a 3-fold erosion increase in the Italian Alps through time.</description><identifier>ISSN: 0277-3791</identifier><identifier>EISSN: 1873-457X</identifier><identifier>DOI: 10.1016/j.quascirev.2021.107127</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Environment and Society ; Environmental Sciences ; Erosion ; Global Changes ; Human impact ; Isotopic mixing model ; Lake sediments ; Source to sink method</subject><ispartof>Quaternary science reviews, 2021-09, Vol.268, p.107127, Article 107127</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-7d63602e10b0fa0024eefbe9339ea46a10f4b9844d00d7b33d2f3608812b4ec3</citedby><cites>FETCH-LOGICAL-a421t-7d63602e10b0fa0024eefbe9339ea46a10f4b9844d00d7b33d2f3608812b4ec3</cites><orcidid>0000-0001-8258-4545 ; 0000-0002-5391-5461 ; 0000-0002-9620-1514 ; 0000-0003-0810-0308 ; 0000-0002-8706-9902 ; 0000-0001-7982-1159 ; 0000-0003-4832-1615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.quascirev.2021.107127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03340528$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rapuc, William</creatorcontrib><creatorcontrib>Bouchez, Julien</creatorcontrib><creatorcontrib>Sabatier, Pierre</creatorcontrib><creatorcontrib>Genuite, Kim</creatorcontrib><creatorcontrib>Poulenard, Jérôme</creatorcontrib><creatorcontrib>Gaillardet, Jérôme</creatorcontrib><creatorcontrib>Arnaud, Fabien</creatorcontrib><title>Quantitative evaluation of human and climate forcing on erosion in the alpine Critical Zone over the last 2000 years</title><title>Quaternary science reviews</title><description>Soil erosion is one of the main environmental threats affecting the Critical Zone (CZ) and thus ecosystem services and human societies. Through time, physical erosion is linked to both climate variations and the landscape evolution under long-term human pressures. In mountainous areas where erosion is highest a combination of large spatial and temporal approaches allows to assess the effect of these forcing factors on erosion rates. Here, we apply a retrospective approach based on lake sediments to reconstruct the long-term evolution of erosion in alpine landscapes. Lake Iseo in the Italian Alps acts as a natural sink for all the erosion products from a large catchment (1777 km2). This catchment is representative of the southern Italian Alps, where Holocene human activity and climate fluctuations are well known. The approach combines a source-to-sink method, using isotopic geochemistry (εNd, 87Sr/86Sr) associated to a multiproxy study of a lacustrine sediment section covering the last 2000 years. The applied method allows us to disentangle the role of climate and land use as erosion forcing factors through their differential impact on the various rock types present in the catchment. Indeed, the high-altitude part of the Iseo catchment, where glacier advances and retreats drive the erosion, presents isotopic signature different from those of the sedimentary rocks located in the lower part of the catchment, where both human activities and precipitations impacted erosion through time. A chronicle of glacial erosion over the last 2000 years was produced. Once the climatic trend was highlighted, the signal of erosion of sedimentary rocks was investigated to understand the influence of humans. From the Roman Period to the Industrial Age several periods of deforestation and increased human pressure were documented. The past sediment yield inferred for sedimentary rocks exhibits the highest values (>80 t km−2. yr−1) at periods of intense human practices. Hence, since the late Roman Period, human activities seem to be the dominant forcing factor of the physical erosion in mountainous environment of northern Italy. This study presents the first reconstruction through time of sediment yield derived from lake sediments associated with sediment sources identification and quantitative evaluation of the CZ erosion drivers.
•Soil erosion is one of the main environmental threats affecting human societies.•Need of quantitative evaluation of soil loss over large and long scales.•Here we combine source-to-sink and retrospective approach on lake sediments.•This allows to quantify climate and human forcing on erosion over the last 2 ka.•Human activities led to a 3-fold erosion increase in the Italian Alps through time.</description><subject>Environment and Society</subject><subject>Environmental Sciences</subject><subject>Erosion</subject><subject>Global Changes</subject><subject>Human impact</subject><subject>Isotopic mixing model</subject><subject>Lake sediments</subject><subject>Source to sink method</subject><issn>0277-3791</issn><issn>1873-457X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFY_g3v1kDr7p930WIpaoSBCD-JlmSQTuyVN6mYb6Ld3Y6RXTzs7894M78fYvYCJADF73E2-j9jmzlM3kSBF7BohzQUbidSoRE_NxyUbgTQmUWYurtlN2-4AYCpTOWLh_Yh1cAGD64hTh9Uxlk3Nm5Jvj3usOdYFzyu3x0C8bHzu6i8e5-Sbtte5moctcawOria-9C64HCv-2cRf05H_nVbYBi7jUX4i9O0tuyqxaunu7x2zzfPTZrlK1m8vr8vFOkEtRUhMMVMzkCQggxIBpCYqM5orNSfUMxRQ6myeal0AFCZTqpBlNKSpkJmmXI3Zw7B2i5U9-BjBn2yDzq4Wa9v3QCndc-hE1JpBm8dcrafybBBge852Z8-cbc_ZDpyjczE4KSbpHHkbRVTnVERpHmzRuH93_ABd3osz</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Rapuc, William</creator><creator>Bouchez, Julien</creator><creator>Sabatier, Pierre</creator><creator>Genuite, Kim</creator><creator>Poulenard, Jérôme</creator><creator>Gaillardet, Jérôme</creator><creator>Arnaud, Fabien</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8258-4545</orcidid><orcidid>https://orcid.org/0000-0002-5391-5461</orcidid><orcidid>https://orcid.org/0000-0002-9620-1514</orcidid><orcidid>https://orcid.org/0000-0003-0810-0308</orcidid><orcidid>https://orcid.org/0000-0002-8706-9902</orcidid><orcidid>https://orcid.org/0000-0001-7982-1159</orcidid><orcidid>https://orcid.org/0000-0003-4832-1615</orcidid></search><sort><creationdate>20210915</creationdate><title>Quantitative evaluation of human and climate forcing on erosion in the alpine Critical Zone over the last 2000 years</title><author>Rapuc, William ; Bouchez, Julien ; Sabatier, Pierre ; Genuite, Kim ; Poulenard, Jérôme ; Gaillardet, Jérôme ; Arnaud, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-7d63602e10b0fa0024eefbe9339ea46a10f4b9844d00d7b33d2f3608812b4ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Environment and Society</topic><topic>Environmental Sciences</topic><topic>Erosion</topic><topic>Global Changes</topic><topic>Human impact</topic><topic>Isotopic mixing model</topic><topic>Lake sediments</topic><topic>Source to sink method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapuc, William</creatorcontrib><creatorcontrib>Bouchez, Julien</creatorcontrib><creatorcontrib>Sabatier, Pierre</creatorcontrib><creatorcontrib>Genuite, Kim</creatorcontrib><creatorcontrib>Poulenard, Jérôme</creatorcontrib><creatorcontrib>Gaillardet, Jérôme</creatorcontrib><creatorcontrib>Arnaud, Fabien</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Quaternary science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapuc, William</au><au>Bouchez, Julien</au><au>Sabatier, Pierre</au><au>Genuite, Kim</au><au>Poulenard, Jérôme</au><au>Gaillardet, Jérôme</au><au>Arnaud, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative evaluation of human and climate forcing on erosion in the alpine Critical Zone over the last 2000 years</atitle><jtitle>Quaternary science reviews</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>268</volume><spage>107127</spage><pages>107127-</pages><artnum>107127</artnum><issn>0277-3791</issn><eissn>1873-457X</eissn><abstract>Soil erosion is one of the main environmental threats affecting the Critical Zone (CZ) and thus ecosystem services and human societies. Through time, physical erosion is linked to both climate variations and the landscape evolution under long-term human pressures. In mountainous areas where erosion is highest a combination of large spatial and temporal approaches allows to assess the effect of these forcing factors on erosion rates. Here, we apply a retrospective approach based on lake sediments to reconstruct the long-term evolution of erosion in alpine landscapes. Lake Iseo in the Italian Alps acts as a natural sink for all the erosion products from a large catchment (1777 km2). This catchment is representative of the southern Italian Alps, where Holocene human activity and climate fluctuations are well known. The approach combines a source-to-sink method, using isotopic geochemistry (εNd, 87Sr/86Sr) associated to a multiproxy study of a lacustrine sediment section covering the last 2000 years. The applied method allows us to disentangle the role of climate and land use as erosion forcing factors through their differential impact on the various rock types present in the catchment. Indeed, the high-altitude part of the Iseo catchment, where glacier advances and retreats drive the erosion, presents isotopic signature different from those of the sedimentary rocks located in the lower part of the catchment, where both human activities and precipitations impacted erosion through time. A chronicle of glacial erosion over the last 2000 years was produced. Once the climatic trend was highlighted, the signal of erosion of sedimentary rocks was investigated to understand the influence of humans. From the Roman Period to the Industrial Age several periods of deforestation and increased human pressure were documented. The past sediment yield inferred for sedimentary rocks exhibits the highest values (>80 t km−2. yr−1) at periods of intense human practices. Hence, since the late Roman Period, human activities seem to be the dominant forcing factor of the physical erosion in mountainous environment of northern Italy. This study presents the first reconstruction through time of sediment yield derived from lake sediments associated with sediment sources identification and quantitative evaluation of the CZ erosion drivers.
•Soil erosion is one of the main environmental threats affecting human societies.•Need of quantitative evaluation of soil loss over large and long scales.•Here we combine source-to-sink and retrospective approach on lake sediments.•This allows to quantify climate and human forcing on erosion over the last 2 ka.•Human activities led to a 3-fold erosion increase in the Italian Alps through time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.quascirev.2021.107127</doi><orcidid>https://orcid.org/0000-0001-8258-4545</orcidid><orcidid>https://orcid.org/0000-0002-5391-5461</orcidid><orcidid>https://orcid.org/0000-0002-9620-1514</orcidid><orcidid>https://orcid.org/0000-0003-0810-0308</orcidid><orcidid>https://orcid.org/0000-0002-8706-9902</orcidid><orcidid>https://orcid.org/0000-0001-7982-1159</orcidid><orcidid>https://orcid.org/0000-0003-4832-1615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-3791 |
ispartof | Quaternary science reviews, 2021-09, Vol.268, p.107127, Article 107127 |
issn | 0277-3791 1873-457X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03340528v1 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Environment and Society Environmental Sciences Erosion Global Changes Human impact Isotopic mixing model Lake sediments Source to sink method |
title | Quantitative evaluation of human and climate forcing on erosion in the alpine Critical Zone over the last 2000 years |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20evaluation%20of%20human%20and%20climate%20forcing%20on%20erosion%20in%20the%20alpine%20Critical%20Zone%20over%20the%20last%202000%20years&rft.jtitle=Quaternary%20science%20reviews&rft.au=Rapuc,%20William&rft.date=2021-09-15&rft.volume=268&rft.spage=107127&rft.pages=107127-&rft.artnum=107127&rft.issn=0277-3791&rft.eissn=1873-457X&rft_id=info:doi/10.1016/j.quascirev.2021.107127&rft_dat=%3Celsevier_hal_p%3ES0277379121003346%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0277379121003346&rfr_iscdi=true |