Solutal buoyancy and electrovortex flow in liquid metal batteries
Solutal buoyancy has a large impact on the flow of the alloy phase composing the positive electrode in liquid metal batteries. During discharge solutal buoyancy creates a stabilizing stratification, during charge it creates a vigorous solutal convection. In this article we provide new physical under...
Gespeichert in:
Veröffentlicht in: | Physical review fluids 2020-07, Vol.5 (7), Article 074501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physical review fluids |
container_volume | 5 |
creator | Herreman, W. Bénard, S. Nore, C. Personnettaz, P. Cappanera, L. Guermond, J.-L. |
description | Solutal buoyancy has a large impact on the flow of the alloy phase composing the positive electrode in liquid metal batteries. During discharge solutal buoyancy creates a stabilizing stratification, during charge it creates a vigorous solutal convection. In this article we provide new physical understandings of the role of solutal buoyancy during both charge and discharge. In particular we find that during discharge the electrovortex mechanism is in general not strong enough to counter the stabilizing effect of solutal buoyancy, and therefore this mechanism cannot be used to mix the alloy as is sometimes suggested in the literature. We show that the mixing capability of a generic flow in the alloy phase can be estimated by comparing the typical flow magnitude U to two velocity scales: U p and U m. Below U p the flow cannot mix the alloy, and above U m the flow significantly opposes solutal buoyancy. Although we focus on Li||Pb-based batteries, these simple mixing criteria can be used during the discharging phase in other types of liquid batteries. We also present new, fully three-dimensional simulations of solutal convection during the charging cycle. These simulations suggest scaling laws for the magnitude of the convective flow, the time for the onset of solutal convection, and the typical inhomogeneity level in the alloy during charge. We propose physical arguments to explain these scaling laws. |
doi_str_mv | 10.1103/PhysRevFluids.5.074501 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03335872v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03335872v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-153fa925561d1c51520b86a7ccf25fde4668365efd15144320edf6d8e69e85573</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWGr_guTqYWuy2Ul2j6VYFQqKH-AtpMmErqSNJtvq_ntbK6KnGYZn3hceQs45G3POxOX9ss8PuJ2FTevyGMZMVcD4ERmUlWyKpmEvx3_2UzLK-ZUxxqVQqqkHZPIYw6YzgS42sTdr21OzdhQD2i7FbUwdflIf4gdt1zS077sWusJv3nQdphbzGTnxJmQc_cwheZ5dPU1vivnd9e10Mi-sEKorOAhvmhJAcsctcCjZopZGWetL8A4rKWshAb3jwKtKlAydl65G2WANoMSQXBxylybot9SuTOp1NK2-mcz1_saEEFCrcst3rDywNsWcE_rfB8703pv-502DPngTX7QUZKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solutal buoyancy and electrovortex flow in liquid metal batteries</title><source>American Physical Society Journals</source><creator>Herreman, W. ; Bénard, S. ; Nore, C. ; Personnettaz, P. ; Cappanera, L. ; Guermond, J.-L.</creator><creatorcontrib>Herreman, W. ; Bénard, S. ; Nore, C. ; Personnettaz, P. ; Cappanera, L. ; Guermond, J.-L.</creatorcontrib><description>Solutal buoyancy has a large impact on the flow of the alloy phase composing the positive electrode in liquid metal batteries. During discharge solutal buoyancy creates a stabilizing stratification, during charge it creates a vigorous solutal convection. In this article we provide new physical understandings of the role of solutal buoyancy during both charge and discharge. In particular we find that during discharge the electrovortex mechanism is in general not strong enough to counter the stabilizing effect of solutal buoyancy, and therefore this mechanism cannot be used to mix the alloy as is sometimes suggested in the literature. We show that the mixing capability of a generic flow in the alloy phase can be estimated by comparing the typical flow magnitude U to two velocity scales: U p and U m. Below U p the flow cannot mix the alloy, and above U m the flow significantly opposes solutal buoyancy. Although we focus on Li||Pb-based batteries, these simple mixing criteria can be used during the discharging phase in other types of liquid batteries. We also present new, fully three-dimensional simulations of solutal convection during the charging cycle. These simulations suggest scaling laws for the magnitude of the convective flow, the time for the onset of solutal convection, and the typical inhomogeneity level in the alloy during charge. We propose physical arguments to explain these scaling laws.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.5.074501</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Engineering Sciences ; Fluids mechanics ; Mechanics</subject><ispartof>Physical review fluids, 2020-07, Vol.5 (7), Article 074501</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-153fa925561d1c51520b86a7ccf25fde4668365efd15144320edf6d8e69e85573</citedby><cites>FETCH-LOGICAL-c337t-153fa925561d1c51520b86a7ccf25fde4668365efd15144320edf6d8e69e85573</cites><orcidid>0000-0002-3116-0280 ; 0000-0001-8990-0643 ; 0000-0002-6974-6818 ; 0000-0001-9118-5247 ; 0000-0002-3871-1073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03335872$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herreman, W.</creatorcontrib><creatorcontrib>Bénard, S.</creatorcontrib><creatorcontrib>Nore, C.</creatorcontrib><creatorcontrib>Personnettaz, P.</creatorcontrib><creatorcontrib>Cappanera, L.</creatorcontrib><creatorcontrib>Guermond, J.-L.</creatorcontrib><title>Solutal buoyancy and electrovortex flow in liquid metal batteries</title><title>Physical review fluids</title><description>Solutal buoyancy has a large impact on the flow of the alloy phase composing the positive electrode in liquid metal batteries. During discharge solutal buoyancy creates a stabilizing stratification, during charge it creates a vigorous solutal convection. In this article we provide new physical understandings of the role of solutal buoyancy during both charge and discharge. In particular we find that during discharge the electrovortex mechanism is in general not strong enough to counter the stabilizing effect of solutal buoyancy, and therefore this mechanism cannot be used to mix the alloy as is sometimes suggested in the literature. We show that the mixing capability of a generic flow in the alloy phase can be estimated by comparing the typical flow magnitude U to two velocity scales: U p and U m. Below U p the flow cannot mix the alloy, and above U m the flow significantly opposes solutal buoyancy. Although we focus on Li||Pb-based batteries, these simple mixing criteria can be used during the discharging phase in other types of liquid batteries. We also present new, fully three-dimensional simulations of solutal convection during the charging cycle. These simulations suggest scaling laws for the magnitude of the convective flow, the time for the onset of solutal convection, and the typical inhomogeneity level in the alloy during charge. We propose physical arguments to explain these scaling laws.</description><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEQhoMoWGr_guTqYWuy2Ul2j6VYFQqKH-AtpMmErqSNJtvq_ntbK6KnGYZn3hceQs45G3POxOX9ss8PuJ2FTevyGMZMVcD4ERmUlWyKpmEvx3_2UzLK-ZUxxqVQqqkHZPIYw6YzgS42sTdr21OzdhQD2i7FbUwdflIf4gdt1zS077sWusJv3nQdphbzGTnxJmQc_cwheZ5dPU1vivnd9e10Mi-sEKorOAhvmhJAcsctcCjZopZGWetL8A4rKWshAb3jwKtKlAydl65G2WANoMSQXBxylybot9SuTOp1NK2-mcz1_saEEFCrcst3rDywNsWcE_rfB8703pv-502DPngTX7QUZKo</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Herreman, W.</creator><creator>Bénard, S.</creator><creator>Nore, C.</creator><creator>Personnettaz, P.</creator><creator>Cappanera, L.</creator><creator>Guermond, J.-L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3116-0280</orcidid><orcidid>https://orcid.org/0000-0001-8990-0643</orcidid><orcidid>https://orcid.org/0000-0002-6974-6818</orcidid><orcidid>https://orcid.org/0000-0001-9118-5247</orcidid><orcidid>https://orcid.org/0000-0002-3871-1073</orcidid></search><sort><creationdate>20200701</creationdate><title>Solutal buoyancy and electrovortex flow in liquid metal batteries</title><author>Herreman, W. ; Bénard, S. ; Nore, C. ; Personnettaz, P. ; Cappanera, L. ; Guermond, J.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-153fa925561d1c51520b86a7ccf25fde4668365efd15144320edf6d8e69e85573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herreman, W.</creatorcontrib><creatorcontrib>Bénard, S.</creatorcontrib><creatorcontrib>Nore, C.</creatorcontrib><creatorcontrib>Personnettaz, P.</creatorcontrib><creatorcontrib>Cappanera, L.</creatorcontrib><creatorcontrib>Guermond, J.-L.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herreman, W.</au><au>Bénard, S.</au><au>Nore, C.</au><au>Personnettaz, P.</au><au>Cappanera, L.</au><au>Guermond, J.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutal buoyancy and electrovortex flow in liquid metal batteries</atitle><jtitle>Physical review fluids</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>5</volume><issue>7</issue><artnum>074501</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>Solutal buoyancy has a large impact on the flow of the alloy phase composing the positive electrode in liquid metal batteries. During discharge solutal buoyancy creates a stabilizing stratification, during charge it creates a vigorous solutal convection. In this article we provide new physical understandings of the role of solutal buoyancy during both charge and discharge. In particular we find that during discharge the electrovortex mechanism is in general not strong enough to counter the stabilizing effect of solutal buoyancy, and therefore this mechanism cannot be used to mix the alloy as is sometimes suggested in the literature. We show that the mixing capability of a generic flow in the alloy phase can be estimated by comparing the typical flow magnitude U to two velocity scales: U p and U m. Below U p the flow cannot mix the alloy, and above U m the flow significantly opposes solutal buoyancy. Although we focus on Li||Pb-based batteries, these simple mixing criteria can be used during the discharging phase in other types of liquid batteries. We also present new, fully three-dimensional simulations of solutal convection during the charging cycle. These simulations suggest scaling laws for the magnitude of the convective flow, the time for the onset of solutal convection, and the typical inhomogeneity level in the alloy during charge. We propose physical arguments to explain these scaling laws.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevFluids.5.074501</doi><orcidid>https://orcid.org/0000-0002-3116-0280</orcidid><orcidid>https://orcid.org/0000-0001-8990-0643</orcidid><orcidid>https://orcid.org/0000-0002-6974-6818</orcidid><orcidid>https://orcid.org/0000-0001-9118-5247</orcidid><orcidid>https://orcid.org/0000-0002-3871-1073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-990X |
ispartof | Physical review fluids, 2020-07, Vol.5 (7), Article 074501 |
issn | 2469-990X 2469-990X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03335872v1 |
source | American Physical Society Journals |
subjects | Engineering Sciences Fluids mechanics Mechanics |
title | Solutal buoyancy and electrovortex flow in liquid metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutal%20buoyancy%20and%20electrovortex%20flow%20in%20liquid%20metal%20batteries&rft.jtitle=Physical%20review%20fluids&rft.au=Herreman,%20W.&rft.date=2020-07-01&rft.volume=5&rft.issue=7&rft.artnum=074501&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.5.074501&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03335872v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |