Forecasting gold price with the XGBoost algorithm and SHAP interaction values
Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions . This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictio...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2024-03, Vol.334 (1-3), p.679-699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 699 |
---|---|
container_issue | 1-3 |
container_start_page | 679 |
container_title | Annals of operations research |
container_volume | 334 |
creator | Jabeur, Sami Ben Mefteh-Wali, Salma Viviani, Jean-Laurent |
description | Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions
.
This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance. |
doi_str_mv | 10.1007/s10479-021-04187-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03331805v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957003916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeATz5U723aJnmcw23CREEF30LapltH18yk2_Dfm1nRN7kPFw7fORwOIZcINwjAbz1CwmUEMUaQoODR_ogMMOVxJBkTx2QAcZpEKWNwSs68XwEAokgH5HFinSm07-p2QRe2KenG1YWh-7pb0m5p6Pv0zlrfUd0srAvimuq2pC-z0TOt2844XXS1belON1vjz8lJpRtvLn7-kLxN7l_Hs2j-NH0Yj-ZRwVLWRRnyzKDIcplXMhVlkSeYGRGOldoUJc-lFDHkxiQJjyXXkFdlqQsjEFEmFRuS6z53qRsVCq-1-1RW12o2mquDBowxFJDuMLBXPbtx9iN07NTKbl0b6qlYphyAScwCFfdU4az3zlS_sQjqMLHqJ1ZhYvU9sdoHE-tNPsDtwri_6H9cX8CTfow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957003916</pqid></control><display><type>article</type><title>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</title><source>Springer Nature - Complete Springer Journals</source><creator>Jabeur, Sami Ben ; Mefteh-Wali, Salma ; Viviani, Jean-Laurent</creator><creatorcontrib>Jabeur, Sami Ben ; Mefteh-Wali, Salma ; Viviani, Jean-Laurent</creatorcontrib><description>Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions
.
This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-021-04187-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial intelligence ; Business and Management ; Combinatorics ; Commodity prices ; Economics and Finance ; Forecasting ; Foreign exchange rates ; Gold ; Humanities and Social Sciences ; Machine learning ; Macroeconomics ; Mathematical models ; Neural networks ; Operations research ; Operations Research/Decision Theory ; Original Research ; Precious metals ; Regression analysis ; Silver ; Silver mines ; Theory of Computation ; Variables</subject><ispartof>Annals of operations research, 2024-03, Vol.334 (1-3), p.679-699</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</citedby><cites>FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</cites><orcidid>0000-0002-4082-136X ; 0000-0001-5331-9451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-021-04187-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-021-04187-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03331805$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabeur, Sami Ben</creatorcontrib><creatorcontrib>Mefteh-Wali, Salma</creatorcontrib><creatorcontrib>Viviani, Jean-Laurent</creatorcontrib><title>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions
.
This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Commodity prices</subject><subject>Economics and Finance</subject><subject>Forecasting</subject><subject>Foreign exchange rates</subject><subject>Gold</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>Macroeconomics</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Precious metals</subject><subject>Regression analysis</subject><subject>Silver</subject><subject>Silver mines</subject><subject>Theory of Computation</subject><subject>Variables</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeATz5U723aJnmcw23CREEF30LapltH18yk2_Dfm1nRN7kPFw7fORwOIZcINwjAbz1CwmUEMUaQoODR_ogMMOVxJBkTx2QAcZpEKWNwSs68XwEAokgH5HFinSm07-p2QRe2KenG1YWh-7pb0m5p6Pv0zlrfUd0srAvimuq2pC-z0TOt2844XXS1belON1vjz8lJpRtvLn7-kLxN7l_Hs2j-NH0Yj-ZRwVLWRRnyzKDIcplXMhVlkSeYGRGOldoUJc-lFDHkxiQJjyXXkFdlqQsjEFEmFRuS6z53qRsVCq-1-1RW12o2mquDBowxFJDuMLBXPbtx9iN07NTKbl0b6qlYphyAScwCFfdU4az3zlS_sQjqMLHqJ1ZhYvU9sdoHE-tNPsDtwri_6H9cX8CTfow</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Jabeur, Sami Ben</creator><creator>Mefteh-Wali, Salma</creator><creator>Viviani, Jean-Laurent</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-4082-136X</orcidid><orcidid>https://orcid.org/0000-0001-5331-9451</orcidid></search><sort><creationdate>20240301</creationdate><title>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</title><author>Jabeur, Sami Ben ; Mefteh-Wali, Salma ; Viviani, Jean-Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Commodity prices</topic><topic>Economics and Finance</topic><topic>Forecasting</topic><topic>Foreign exchange rates</topic><topic>Gold</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>Macroeconomics</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Precious metals</topic><topic>Regression analysis</topic><topic>Silver</topic><topic>Silver mines</topic><topic>Theory of Computation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabeur, Sami Ben</creatorcontrib><creatorcontrib>Mefteh-Wali, Salma</creatorcontrib><creatorcontrib>Viviani, Jean-Laurent</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabeur, Sami Ben</au><au>Mefteh-Wali, Salma</au><au>Viviani, Jean-Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>334</volume><issue>1-3</issue><spage>679</spage><epage>699</epage><pages>679-699</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions
.
This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-021-04187-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4082-136X</orcidid><orcidid>https://orcid.org/0000-0001-5331-9451</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2024-03, Vol.334 (1-3), p.679-699 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03331805v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial intelligence Business and Management Combinatorics Commodity prices Economics and Finance Forecasting Foreign exchange rates Gold Humanities and Social Sciences Machine learning Macroeconomics Mathematical models Neural networks Operations research Operations Research/Decision Theory Original Research Precious metals Regression analysis Silver Silver mines Theory of Computation Variables |
title | Forecasting gold price with the XGBoost algorithm and SHAP interaction values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20gold%20price%20with%20the%20XGBoost%20algorithm%20and%20SHAP%20interaction%20values&rft.jtitle=Annals%20of%20operations%20research&rft.au=Jabeur,%20Sami%20Ben&rft.date=2024-03-01&rft.volume=334&rft.issue=1-3&rft.spage=679&rft.epage=699&rft.pages=679-699&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-021-04187-w&rft_dat=%3Cproquest_hal_p%3E2957003916%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957003916&rft_id=info:pmid/&rfr_iscdi=true |