Forecasting gold price with the XGBoost algorithm and SHAP interaction values

Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions . This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2024-03, Vol.334 (1-3), p.679-699
Hauptverfasser: Jabeur, Sami Ben, Mefteh-Wali, Salma, Viviani, Jean-Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 699
container_issue 1-3
container_start_page 679
container_title Annals of operations research
container_volume 334
creator Jabeur, Sami Ben
Mefteh-Wali, Salma
Viviani, Jean-Laurent
description Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions . This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.
doi_str_mv 10.1007/s10479-021-04187-w
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03331805v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957003916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeATz5U723aJnmcw23CREEF30LapltH18yk2_Dfm1nRN7kPFw7fORwOIZcINwjAbz1CwmUEMUaQoODR_ogMMOVxJBkTx2QAcZpEKWNwSs68XwEAokgH5HFinSm07-p2QRe2KenG1YWh-7pb0m5p6Pv0zlrfUd0srAvimuq2pC-z0TOt2844XXS1belON1vjz8lJpRtvLn7-kLxN7l_Hs2j-NH0Yj-ZRwVLWRRnyzKDIcplXMhVlkSeYGRGOldoUJc-lFDHkxiQJjyXXkFdlqQsjEFEmFRuS6z53qRsVCq-1-1RW12o2mquDBowxFJDuMLBXPbtx9iN07NTKbl0b6qlYphyAScwCFfdU4az3zlS_sQjqMLHqJ1ZhYvU9sdoHE-tNPsDtwri_6H9cX8CTfow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957003916</pqid></control><display><type>article</type><title>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</title><source>Springer Nature - Complete Springer Journals</source><creator>Jabeur, Sami Ben ; Mefteh-Wali, Salma ; Viviani, Jean-Laurent</creator><creatorcontrib>Jabeur, Sami Ben ; Mefteh-Wali, Salma ; Viviani, Jean-Laurent</creatorcontrib><description>Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions . This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-021-04187-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial intelligence ; Business and Management ; Combinatorics ; Commodity prices ; Economics and Finance ; Forecasting ; Foreign exchange rates ; Gold ; Humanities and Social Sciences ; Machine learning ; Macroeconomics ; Mathematical models ; Neural networks ; Operations research ; Operations Research/Decision Theory ; Original Research ; Precious metals ; Regression analysis ; Silver ; Silver mines ; Theory of Computation ; Variables</subject><ispartof>Annals of operations research, 2024-03, Vol.334 (1-3), p.679-699</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</citedby><cites>FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</cites><orcidid>0000-0002-4082-136X ; 0000-0001-5331-9451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-021-04187-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-021-04187-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03331805$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabeur, Sami Ben</creatorcontrib><creatorcontrib>Mefteh-Wali, Salma</creatorcontrib><creatorcontrib>Viviani, Jean-Laurent</creatorcontrib><title>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions . This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Commodity prices</subject><subject>Economics and Finance</subject><subject>Forecasting</subject><subject>Foreign exchange rates</subject><subject>Gold</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>Macroeconomics</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Precious metals</subject><subject>Regression analysis</subject><subject>Silver</subject><subject>Silver mines</subject><subject>Theory of Computation</subject><subject>Variables</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKd_wKeATz5U723aJnmcw23CREEF30LapltH18yk2_Dfm1nRN7kPFw7fORwOIZcINwjAbz1CwmUEMUaQoODR_ogMMOVxJBkTx2QAcZpEKWNwSs68XwEAokgH5HFinSm07-p2QRe2KenG1YWh-7pb0m5p6Pv0zlrfUd0srAvimuq2pC-z0TOt2844XXS1belON1vjz8lJpRtvLn7-kLxN7l_Hs2j-NH0Yj-ZRwVLWRRnyzKDIcplXMhVlkSeYGRGOldoUJc-lFDHkxiQJjyXXkFdlqQsjEFEmFRuS6z53qRsVCq-1-1RW12o2mquDBowxFJDuMLBXPbtx9iN07NTKbl0b6qlYphyAScwCFfdU4az3zlS_sQjqMLHqJ1ZhYvU9sdoHE-tNPsDtwri_6H9cX8CTfow</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Jabeur, Sami Ben</creator><creator>Mefteh-Wali, Salma</creator><creator>Viviani, Jean-Laurent</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-4082-136X</orcidid><orcidid>https://orcid.org/0000-0001-5331-9451</orcidid></search><sort><creationdate>20240301</creationdate><title>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</title><author>Jabeur, Sami Ben ; Mefteh-Wali, Salma ; Viviani, Jean-Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6176e186b9bf958dcb416e8e8e3daecd7b99820bee447297a0bfddace811194f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Commodity prices</topic><topic>Economics and Finance</topic><topic>Forecasting</topic><topic>Foreign exchange rates</topic><topic>Gold</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>Macroeconomics</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Precious metals</topic><topic>Regression analysis</topic><topic>Silver</topic><topic>Silver mines</topic><topic>Theory of Computation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabeur, Sami Ben</creatorcontrib><creatorcontrib>Mefteh-Wali, Salma</creatorcontrib><creatorcontrib>Viviani, Jean-Laurent</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabeur, Sami Ben</au><au>Mefteh-Wali, Salma</au><au>Viviani, Jean-Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting gold price with the XGBoost algorithm and SHAP interaction values</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>334</volume><issue>1-3</issue><spage>679</spage><epage>699</epage><pages>679-699</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Financial institutions, investors, mining companies and related firms need an effective accurate forecasting model to examine gold price fluctuations in order to make correct decisions . This paper proposes an innovative approach to accurately forecast gold price movements and to interpret predictions. First, it compares six machine learning models. These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) and CatBoost. The empirical findings indicate the superiority of XGBoost over other advanced machine learning models. Second, it proposes Shapley additive explanations (SHAP) in order to help policy makers to interpret the predictions of complex machine learning models and to examine the importance of various features that affect gold prices. Our results illustrate that the utilization of XGBoost along with SHAP approach could provide a significant boost in increasing the gold price forecasting performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-021-04187-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4082-136X</orcidid><orcidid>https://orcid.org/0000-0001-5331-9451</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2024-03, Vol.334 (1-3), p.679-699
issn 0254-5330
1572-9338
language eng
recordid cdi_hal_primary_oai_HAL_hal_03331805v1
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial intelligence
Business and Management
Combinatorics
Commodity prices
Economics and Finance
Forecasting
Foreign exchange rates
Gold
Humanities and Social Sciences
Machine learning
Macroeconomics
Mathematical models
Neural networks
Operations research
Operations Research/Decision Theory
Original Research
Precious metals
Regression analysis
Silver
Silver mines
Theory of Computation
Variables
title Forecasting gold price with the XGBoost algorithm and SHAP interaction values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20gold%20price%20with%20the%20XGBoost%20algorithm%20and%20SHAP%20interaction%20values&rft.jtitle=Annals%20of%20operations%20research&rft.au=Jabeur,%20Sami%20Ben&rft.date=2024-03-01&rft.volume=334&rft.issue=1-3&rft.spage=679&rft.epage=699&rft.pages=679-699&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-021-04187-w&rft_dat=%3Cproquest_hal_p%3E2957003916%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957003916&rft_id=info:pmid/&rfr_iscdi=true