The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison

The Last Glacial Maximum (LGM; 21 ka BP) was the most recent glacial period when the global ice sheet volume was at a maximum. Therefore, the LGM can be used to investigate atmospheric dynamics under a climate that differed significantly from the present. This study quantitatively compares pollen re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2021-02, Vol.56 (3-4), p.1303-1316
Hauptverfasser: Sun, Yong, Wu, Haibin, Kageyama, Masa, Ramstein, Gilles, Li, Laurent Z. X., Tan, Ning, Lin, Yating, Liu, Bo, Zheng, Weipeng, Zhang, Wenchao, Zou, Liwei, Zhou, Tianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1316
container_issue 3-4
container_start_page 1303
container_title Climate dynamics
container_volume 56
creator Sun, Yong
Wu, Haibin
Kageyama, Masa
Ramstein, Gilles
Li, Laurent Z. X.
Tan, Ning
Lin, Yating
Liu, Bo
Zheng, Weipeng
Zhang, Wenchao
Zou, Liwei
Zhou, Tianjun
description The Last Glacial Maximum (LGM; 21 ka BP) was the most recent glacial period when the global ice sheet volume was at a maximum. Therefore, the LGM can be used to investigate atmospheric dynamics under a climate that differed significantly from the present. This study quantitatively compares pollen records of boreal summer (June–July–August) precipitation with the PMIP3 LGM simulations. The data-model comparison shows an overall agreement on a drier than pre-industrial East Asian summer monsoon (EASM) climate. Nevertheless, 17 out of 55 records show a regional precipitation increase that is also simulated over the additional land mass area due to sea level drop. The thermodynamic and dynamic responses are analyzed to explain a drier LGM EASM as a combination of these two antagonistic mechanisms. Relatively low atmospheric moisture content was the main thermodynamic control on the lower LGM (relative to pre-industrial levels) EASM precipitation amounts in both the reconstructions and the models. In contrast, two dynamic processes in relation to stationary eddy activity act to increase EASM precipitation regionally in records and simulations, respectively. Precipitation increase in records is explained by dynamic enhancement of the horizontal moisture transport, while dynamic enhancement of the vertical moisture transport leads to simulated precipitation increase over the specific region where landmass was exposed during LGM along continental coastlines of China due to significant drop in sea level (relative to pre-industrial levels). Overall, the opposing effects of thermodynamic and dynamic processes on precipitation during the LGM provide a means to reconcile the spatial heterogeneity of recorded precipitation changes in sign, although data-model comparison suggests that the simulated dynamic wetting mechanism is too weak relative to the thermodynamic drying mechanism over data-model disagreement regions.
doi_str_mv 10.1007/s00382-020-05533-7
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03331787v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651234369</galeid><sourcerecordid>A651234369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-6bedad52913f7708446c6631c7306ec8b3bc51f0a458045df761d108d5bca1683</originalsourceid><addsrcrecordid>eNp9Uk1v1DAQjRBILAt_gJMlJCQOae04trPcVlVpK22FBOVszfpj11ViB9tB7d_hl-KQQukF-WB7_N7M-M2rqrcEnxCMxWnCmHZNjRtcY8YorcWzakVaWkLdpn1erfCG4lowwV5Wr1K6xZi0XDSr6ufN0SAVfI6QsvMHZKw1KicULMpHE4eg7z0MTiHwGv05jzEok5IpMI_OCxNtkwOP0jQMJqIh-BTKyxiNcqPLkF256SnOBUpWtJspFz0oBz26hjs3TMNHBEhDhrqUNH3paRghuhT86-qFhT6ZNw_7uvr26fzm7LLefb64OtvuasUwyTXfGw2aNRtCrRC4a1uuOKdECYq5Ud2e7hUjFkPLOtwybQUnmuBOs70Cwju6rj4seY_QyzG6AeK9DODk5XYn5ximlBLRiR-kYN8t2KLE98mkLG_DFH1pTzZtJxrGeJnIujpZUAfojXTehiKzKkubomLwxroS33JGGtpSvnls4YEwD8bc5QNMKcmrr1-eYt__gz0a6PMxhX6atU5Pgc0CVDGkFI39-zmC5eweubhHFvfI3-6RopDoQkrjPDUTHz_4H9YvekDHRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487255600</pqid></control><display><type>article</type><title>The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sun, Yong ; Wu, Haibin ; Kageyama, Masa ; Ramstein, Gilles ; Li, Laurent Z. X. ; Tan, Ning ; Lin, Yating ; Liu, Bo ; Zheng, Weipeng ; Zhang, Wenchao ; Zou, Liwei ; Zhou, Tianjun</creator><creatorcontrib>Sun, Yong ; Wu, Haibin ; Kageyama, Masa ; Ramstein, Gilles ; Li, Laurent Z. X. ; Tan, Ning ; Lin, Yating ; Liu, Bo ; Zheng, Weipeng ; Zhang, Wenchao ; Zou, Liwei ; Zhou, Tianjun</creatorcontrib><description>The Last Glacial Maximum (LGM; 21 ka BP) was the most recent glacial period when the global ice sheet volume was at a maximum. Therefore, the LGM can be used to investigate atmospheric dynamics under a climate that differed significantly from the present. This study quantitatively compares pollen records of boreal summer (June–July–August) precipitation with the PMIP3 LGM simulations. The data-model comparison shows an overall agreement on a drier than pre-industrial East Asian summer monsoon (EASM) climate. Nevertheless, 17 out of 55 records show a regional precipitation increase that is also simulated over the additional land mass area due to sea level drop. The thermodynamic and dynamic responses are analyzed to explain a drier LGM EASM as a combination of these two antagonistic mechanisms. Relatively low atmospheric moisture content was the main thermodynamic control on the lower LGM (relative to pre-industrial levels) EASM precipitation amounts in both the reconstructions and the models. In contrast, two dynamic processes in relation to stationary eddy activity act to increase EASM precipitation regionally in records and simulations, respectively. Precipitation increase in records is explained by dynamic enhancement of the horizontal moisture transport, while dynamic enhancement of the vertical moisture transport leads to simulated precipitation increase over the specific region where landmass was exposed during LGM along continental coastlines of China due to significant drop in sea level (relative to pre-industrial levels). Overall, the opposing effects of thermodynamic and dynamic processes on precipitation during the LGM provide a means to reconcile the spatial heterogeneity of recorded precipitation changes in sign, although data-model comparison suggests that the simulated dynamic wetting mechanism is too weak relative to the thermodynamic drying mechanism over data-model disagreement regions.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-020-05533-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Atmospheric dynamics ; Atmospheric models ; Atmospheric moisture ; Climate ; Climatology ; Comparative analysis ; Continental interfaces, environment ; Data ; Drying ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; East Asian monsoon ; Environmental aspects ; Environmental Sciences ; Geophysics/Geodesy ; Glacial periods ; Glaciation ; Heterogeneity ; Ice ages ; Ice sheets ; Last Glacial Maximum ; Moisture content ; Monsoon climates ; Monsoon precipitation ; Monsoons ; Oceanography ; Paleoclimatology ; Patchiness ; Pollen ; Precipitation ; Records ; Sciences of the Universe ; Sea level ; Simulation ; Spatial heterogeneity ; Statistics ; Summer ; Summer climates ; Summer monsoon ; Thermodynamics ; Transport ; Water content ; Wetting</subject><ispartof>Climate dynamics, 2021-02, Vol.56 (3-4), p.1303-1316</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-6bedad52913f7708446c6631c7306ec8b3bc51f0a458045df761d108d5bca1683</citedby><cites>FETCH-LOGICAL-c501t-6bedad52913f7708446c6631c7306ec8b3bc51f0a458045df761d108d5bca1683</cites><orcidid>0000-0002-1087-6060 ; 0000-0003-0822-5880 ; 0000-0003-1968-197X ; 0000-0002-3855-3976 ; 0000-0002-1522-917X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-020-05533-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-020-05533-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03331787$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Wu, Haibin</creatorcontrib><creatorcontrib>Kageyama, Masa</creatorcontrib><creatorcontrib>Ramstein, Gilles</creatorcontrib><creatorcontrib>Li, Laurent Z. X.</creatorcontrib><creatorcontrib>Tan, Ning</creatorcontrib><creatorcontrib>Lin, Yating</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Zheng, Weipeng</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Zou, Liwei</creatorcontrib><creatorcontrib>Zhou, Tianjun</creatorcontrib><title>The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The Last Glacial Maximum (LGM; 21 ka BP) was the most recent glacial period when the global ice sheet volume was at a maximum. Therefore, the LGM can be used to investigate atmospheric dynamics under a climate that differed significantly from the present. This study quantitatively compares pollen records of boreal summer (June–July–August) precipitation with the PMIP3 LGM simulations. The data-model comparison shows an overall agreement on a drier than pre-industrial East Asian summer monsoon (EASM) climate. Nevertheless, 17 out of 55 records show a regional precipitation increase that is also simulated over the additional land mass area due to sea level drop. The thermodynamic and dynamic responses are analyzed to explain a drier LGM EASM as a combination of these two antagonistic mechanisms. Relatively low atmospheric moisture content was the main thermodynamic control on the lower LGM (relative to pre-industrial levels) EASM precipitation amounts in both the reconstructions and the models. In contrast, two dynamic processes in relation to stationary eddy activity act to increase EASM precipitation regionally in records and simulations, respectively. Precipitation increase in records is explained by dynamic enhancement of the horizontal moisture transport, while dynamic enhancement of the vertical moisture transport leads to simulated precipitation increase over the specific region where landmass was exposed during LGM along continental coastlines of China due to significant drop in sea level (relative to pre-industrial levels). Overall, the opposing effects of thermodynamic and dynamic processes on precipitation during the LGM provide a means to reconcile the spatial heterogeneity of recorded precipitation changes in sign, although data-model comparison suggests that the simulated dynamic wetting mechanism is too weak relative to the thermodynamic drying mechanism over data-model disagreement regions.</description><subject>Analysis</subject><subject>Atmospheric dynamics</subject><subject>Atmospheric models</subject><subject>Atmospheric moisture</subject><subject>Climate</subject><subject>Climatology</subject><subject>Comparative analysis</subject><subject>Continental interfaces, environment</subject><subject>Data</subject><subject>Drying</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>East Asian monsoon</subject><subject>Environmental aspects</subject><subject>Environmental Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Glacial periods</subject><subject>Glaciation</subject><subject>Heterogeneity</subject><subject>Ice ages</subject><subject>Ice sheets</subject><subject>Last Glacial Maximum</subject><subject>Moisture content</subject><subject>Monsoon climates</subject><subject>Monsoon precipitation</subject><subject>Monsoons</subject><subject>Oceanography</subject><subject>Paleoclimatology</subject><subject>Patchiness</subject><subject>Pollen</subject><subject>Precipitation</subject><subject>Records</subject><subject>Sciences of the Universe</subject><subject>Sea level</subject><subject>Simulation</subject><subject>Spatial heterogeneity</subject><subject>Statistics</subject><subject>Summer</subject><subject>Summer climates</subject><subject>Summer monsoon</subject><subject>Thermodynamics</subject><subject>Transport</subject><subject>Water content</subject><subject>Wetting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9Uk1v1DAQjRBILAt_gJMlJCQOae04trPcVlVpK22FBOVszfpj11ViB9tB7d_hl-KQQukF-WB7_N7M-M2rqrcEnxCMxWnCmHZNjRtcY8YorcWzakVaWkLdpn1erfCG4lowwV5Wr1K6xZi0XDSr6ufN0SAVfI6QsvMHZKw1KicULMpHE4eg7z0MTiHwGv05jzEok5IpMI_OCxNtkwOP0jQMJqIh-BTKyxiNcqPLkF256SnOBUpWtJspFz0oBz26hjs3TMNHBEhDhrqUNH3paRghuhT86-qFhT6ZNw_7uvr26fzm7LLefb64OtvuasUwyTXfGw2aNRtCrRC4a1uuOKdECYq5Ud2e7hUjFkPLOtwybQUnmuBOs70Cwju6rj4seY_QyzG6AeK9DODk5XYn5ximlBLRiR-kYN8t2KLE98mkLG_DFH1pTzZtJxrGeJnIujpZUAfojXTehiKzKkubomLwxroS33JGGtpSvnls4YEwD8bc5QNMKcmrr1-eYt__gz0a6PMxhX6atU5Pgc0CVDGkFI39-zmC5eweubhHFvfI3-6RopDoQkrjPDUTHz_4H9YvekDHRQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sun, Yong</creator><creator>Wu, Haibin</creator><creator>Kageyama, Masa</creator><creator>Ramstein, Gilles</creator><creator>Li, Laurent Z. X.</creator><creator>Tan, Ning</creator><creator>Lin, Yating</creator><creator>Liu, Bo</creator><creator>Zheng, Weipeng</creator><creator>Zhang, Wenchao</creator><creator>Zou, Liwei</creator><creator>Zhou, Tianjun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1087-6060</orcidid><orcidid>https://orcid.org/0000-0003-0822-5880</orcidid><orcidid>https://orcid.org/0000-0003-1968-197X</orcidid><orcidid>https://orcid.org/0000-0002-3855-3976</orcidid><orcidid>https://orcid.org/0000-0002-1522-917X</orcidid></search><sort><creationdate>20210201</creationdate><title>The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison</title><author>Sun, Yong ; Wu, Haibin ; Kageyama, Masa ; Ramstein, Gilles ; Li, Laurent Z. X. ; Tan, Ning ; Lin, Yating ; Liu, Bo ; Zheng, Weipeng ; Zhang, Wenchao ; Zou, Liwei ; Zhou, Tianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-6bedad52913f7708446c6631c7306ec8b3bc51f0a458045df761d108d5bca1683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Atmospheric dynamics</topic><topic>Atmospheric models</topic><topic>Atmospheric moisture</topic><topic>Climate</topic><topic>Climatology</topic><topic>Comparative analysis</topic><topic>Continental interfaces, environment</topic><topic>Data</topic><topic>Drying</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>East Asian monsoon</topic><topic>Environmental aspects</topic><topic>Environmental Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Glacial periods</topic><topic>Glaciation</topic><topic>Heterogeneity</topic><topic>Ice ages</topic><topic>Ice sheets</topic><topic>Last Glacial Maximum</topic><topic>Moisture content</topic><topic>Monsoon climates</topic><topic>Monsoon precipitation</topic><topic>Monsoons</topic><topic>Oceanography</topic><topic>Paleoclimatology</topic><topic>Patchiness</topic><topic>Pollen</topic><topic>Precipitation</topic><topic>Records</topic><topic>Sciences of the Universe</topic><topic>Sea level</topic><topic>Simulation</topic><topic>Spatial heterogeneity</topic><topic>Statistics</topic><topic>Summer</topic><topic>Summer climates</topic><topic>Summer monsoon</topic><topic>Thermodynamics</topic><topic>Transport</topic><topic>Water content</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Wu, Haibin</creatorcontrib><creatorcontrib>Kageyama, Masa</creatorcontrib><creatorcontrib>Ramstein, Gilles</creatorcontrib><creatorcontrib>Li, Laurent Z. X.</creatorcontrib><creatorcontrib>Tan, Ning</creatorcontrib><creatorcontrib>Lin, Yating</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Zheng, Weipeng</creatorcontrib><creatorcontrib>Zhang, Wenchao</creatorcontrib><creatorcontrib>Zou, Liwei</creatorcontrib><creatorcontrib>Zhou, Tianjun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yong</au><au>Wu, Haibin</au><au>Kageyama, Masa</au><au>Ramstein, Gilles</au><au>Li, Laurent Z. X.</au><au>Tan, Ning</au><au>Lin, Yating</au><au>Liu, Bo</au><au>Zheng, Weipeng</au><au>Zhang, Wenchao</au><au>Zou, Liwei</au><au>Zhou, Tianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>56</volume><issue>3-4</issue><spage>1303</spage><epage>1316</epage><pages>1303-1316</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The Last Glacial Maximum (LGM; 21 ka BP) was the most recent glacial period when the global ice sheet volume was at a maximum. Therefore, the LGM can be used to investigate atmospheric dynamics under a climate that differed significantly from the present. This study quantitatively compares pollen records of boreal summer (June–July–August) precipitation with the PMIP3 LGM simulations. The data-model comparison shows an overall agreement on a drier than pre-industrial East Asian summer monsoon (EASM) climate. Nevertheless, 17 out of 55 records show a regional precipitation increase that is also simulated over the additional land mass area due to sea level drop. The thermodynamic and dynamic responses are analyzed to explain a drier LGM EASM as a combination of these two antagonistic mechanisms. Relatively low atmospheric moisture content was the main thermodynamic control on the lower LGM (relative to pre-industrial levels) EASM precipitation amounts in both the reconstructions and the models. In contrast, two dynamic processes in relation to stationary eddy activity act to increase EASM precipitation regionally in records and simulations, respectively. Precipitation increase in records is explained by dynamic enhancement of the horizontal moisture transport, while dynamic enhancement of the vertical moisture transport leads to simulated precipitation increase over the specific region where landmass was exposed during LGM along continental coastlines of China due to significant drop in sea level (relative to pre-industrial levels). Overall, the opposing effects of thermodynamic and dynamic processes on precipitation during the LGM provide a means to reconcile the spatial heterogeneity of recorded precipitation changes in sign, although data-model comparison suggests that the simulated dynamic wetting mechanism is too weak relative to the thermodynamic drying mechanism over data-model disagreement regions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-020-05533-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1087-6060</orcidid><orcidid>https://orcid.org/0000-0003-0822-5880</orcidid><orcidid>https://orcid.org/0000-0003-1968-197X</orcidid><orcidid>https://orcid.org/0000-0002-3855-3976</orcidid><orcidid>https://orcid.org/0000-0002-1522-917X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2021-02, Vol.56 (3-4), p.1303-1316
issn 0930-7575
1432-0894
language eng
recordid cdi_hal_primary_oai_HAL_hal_03331787v1
source SpringerLink Journals - AutoHoldings
subjects Analysis
Atmospheric dynamics
Atmospheric models
Atmospheric moisture
Climate
Climatology
Comparative analysis
Continental interfaces, environment
Data
Drying
Dynamics
Earth and Environmental Science
Earth Sciences
East Asian monsoon
Environmental aspects
Environmental Sciences
Geophysics/Geodesy
Glacial periods
Glaciation
Heterogeneity
Ice ages
Ice sheets
Last Glacial Maximum
Moisture content
Monsoon climates
Monsoon precipitation
Monsoons
Oceanography
Paleoclimatology
Patchiness
Pollen
Precipitation
Records
Sciences of the Universe
Sea level
Simulation
Spatial heterogeneity
Statistics
Summer
Summer climates
Summer monsoon
Thermodynamics
Transport
Water content
Wetting
title The contrasting effects of thermodynamic and dynamic processes on East Asian summer monsoon precipitation during the Last Glacial Maximum: a data-model comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20contrasting%20effects%20of%20thermodynamic%20and%20dynamic%20processes%20on%20East%20Asian%20summer%20monsoon%20precipitation%20during%20the%20Last%20Glacial%20Maximum:%20a%20data-model%20comparison&rft.jtitle=Climate%20dynamics&rft.au=Sun,%20Yong&rft.date=2021-02-01&rft.volume=56&rft.issue=3-4&rft.spage=1303&rft.epage=1316&rft.pages=1303-1316&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-020-05533-7&rft_dat=%3Cgale_hal_p%3EA651234369%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487255600&rft_id=info:pmid/&rft_galeid=A651234369&rfr_iscdi=true