Molecular insights into the biased signaling mechanism of the μ-opioid receptor

GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-10, Vol.81 (20), p.4165-4175.e6
Hauptverfasser: Cong, Xiaojing, Maurel, Damien, Déméné, Hélène, Vasiliauskaité-Brooks, Ieva, Hagelberger, Joanna, Peysson, Fanny, Saint-Paul, Julie, Golebiowski, Jérôme, Granier, Sébastien, Sounier, Rémy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4175.e6
container_issue 20
container_start_page 4165
container_title Molecular cell
container_volume 81
creator Cong, Xiaojing
Maurel, Damien
Déméné, Hélène
Vasiliauskaité-Brooks, Ieva
Hagelberger, Joanna
Peysson, Fanny
Saint-Paul, Julie
Golebiowski, Jérôme
Granier, Sébastien
Sounier, Rémy
description GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands. [Display omitted] •NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.
doi_str_mv 10.1016/j.molcel.2021.07.033
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03331072v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276521006110</els_id><sourcerecordid>oai_HAL_hal_03331072v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EolC4AULZskgYx06cbJCqCihSESxgbTnOpHGVxFWcVuJunIEzkTSlS1Yezbzv0TxCbigEFGh8vw5qW2msghBCGoAIgLETckEhFT6nMT891KGIowm5dG4NQHmUpOdkwjhnDFK4IO-vtkK9rVTrmcaZVdm5vuis15XoZUY5zL2-3ajKNCuvRl2qxrjas8We-Pn27cZYk3statx0tr0iZ4WqHF4f3in5fHr8mC_85dvzy3y29DXnYedrxjKe5SzMMNSgVKoQEoAkKookS0XIEpWBUKqIQYgIQHNd5AITkeuMD_MpuRv_LVUlN62pVfslrTJyMVvKodfrYBREuKM9y0dWt9a5FotjgIIcZMq1HGXKQaYEsU9Pye0Y22yzGvNj6M9eDzyMAPaH7gy20mmDjcbc9Do6mVvz_4Zf-ZeIUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cong, Xiaojing ; Maurel, Damien ; Déméné, Hélène ; Vasiliauskaité-Brooks, Ieva ; Hagelberger, Joanna ; Peysson, Fanny ; Saint-Paul, Julie ; Golebiowski, Jérôme ; Granier, Sébastien ; Sounier, Rémy</creator><creatorcontrib>Cong, Xiaojing ; Maurel, Damien ; Déméné, Hélène ; Vasiliauskaité-Brooks, Ieva ; Hagelberger, Joanna ; Peysson, Fanny ; Saint-Paul, Julie ; Golebiowski, Jérôme ; Granier, Sébastien ; Sounier, Rémy</creatorcontrib><description>GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands. [Display omitted] •NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.07.033</identifier><identifier>PMID: 34433090</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Analgesics, Opioid - chemistry ; Analgesics, Opioid - pharmacology ; Animals ; beta-Arrestins - genetics ; beta-Arrestins - metabolism ; biased agonism ; Binding Sites ; Biochemistry, Molecular Biology ; Computer-Aided Design ; Drug Design ; Drug Partial Agonism ; GPCR ; HEK293 Cells ; Humans ; Life Sciences ; Ligands ; Magnetic Resonance Spectroscopy ; Mice ; molecular dynamics ; Molecular Dynamics Simulation ; Neurobiology ; Neurons and Cognition ; NMR ; opioid ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Stability ; Receptors, Opioid, mu - agonists ; Receptors, Opioid, mu - genetics ; Receptors, Opioid, mu - metabolism ; Sf9 Cells ; Signal Transduction - drug effects ; Structural Biology ; Structure-Activity Relationship</subject><ispartof>Molecular cell, 2021-10, Vol.81 (20), p.4165-4175.e6</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</citedby><cites>FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</cites><orcidid>0000-0002-7531-4309 ; 0000-0002-5051-2392 ; 0000-0003-1550-3658 ; 0000-0002-3675-1952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276521006110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34433090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03331072$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cong, Xiaojing</creatorcontrib><creatorcontrib>Maurel, Damien</creatorcontrib><creatorcontrib>Déméné, Hélène</creatorcontrib><creatorcontrib>Vasiliauskaité-Brooks, Ieva</creatorcontrib><creatorcontrib>Hagelberger, Joanna</creatorcontrib><creatorcontrib>Peysson, Fanny</creatorcontrib><creatorcontrib>Saint-Paul, Julie</creatorcontrib><creatorcontrib>Golebiowski, Jérôme</creatorcontrib><creatorcontrib>Granier, Sébastien</creatorcontrib><creatorcontrib>Sounier, Rémy</creatorcontrib><title>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands. [Display omitted] •NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.</description><subject>Analgesics, Opioid - chemistry</subject><subject>Analgesics, Opioid - pharmacology</subject><subject>Animals</subject><subject>beta-Arrestins - genetics</subject><subject>beta-Arrestins - metabolism</subject><subject>biased agonism</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>Drug Partial Agonism</subject><subject>GPCR</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mice</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>NMR</subject><subject>opioid</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Stability</subject><subject>Receptors, Opioid, mu - agonists</subject><subject>Receptors, Opioid, mu - genetics</subject><subject>Receptors, Opioid, mu - metabolism</subject><subject>Sf9 Cells</subject><subject>Signal Transduction - drug effects</subject><subject>Structural Biology</subject><subject>Structure-Activity Relationship</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFOwzAQRS0EolC4AULZskgYx06cbJCqCihSESxgbTnOpHGVxFWcVuJunIEzkTSlS1Yezbzv0TxCbigEFGh8vw5qW2msghBCGoAIgLETckEhFT6nMT891KGIowm5dG4NQHmUpOdkwjhnDFK4IO-vtkK9rVTrmcaZVdm5vuis15XoZUY5zL2-3ajKNCuvRl2qxrjas8We-Pn27cZYk3statx0tr0iZ4WqHF4f3in5fHr8mC_85dvzy3y29DXnYedrxjKe5SzMMNSgVKoQEoAkKookS0XIEpWBUKqIQYgIQHNd5AITkeuMD_MpuRv_LVUlN62pVfslrTJyMVvKodfrYBREuKM9y0dWt9a5FotjgIIcZMq1HGXKQaYEsU9Pye0Y22yzGvNj6M9eDzyMAPaH7gy20mmDjcbc9Do6mVvz_4Zf-ZeIUw</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Cong, Xiaojing</creator><creator>Maurel, Damien</creator><creator>Déméné, Hélène</creator><creator>Vasiliauskaité-Brooks, Ieva</creator><creator>Hagelberger, Joanna</creator><creator>Peysson, Fanny</creator><creator>Saint-Paul, Julie</creator><creator>Golebiowski, Jérôme</creator><creator>Granier, Sébastien</creator><creator>Sounier, Rémy</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7531-4309</orcidid><orcidid>https://orcid.org/0000-0002-5051-2392</orcidid><orcidid>https://orcid.org/0000-0003-1550-3658</orcidid><orcidid>https://orcid.org/0000-0002-3675-1952</orcidid></search><sort><creationdate>20211021</creationdate><title>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</title><author>Cong, Xiaojing ; Maurel, Damien ; Déméné, Hélène ; Vasiliauskaité-Brooks, Ieva ; Hagelberger, Joanna ; Peysson, Fanny ; Saint-Paul, Julie ; Golebiowski, Jérôme ; Granier, Sébastien ; Sounier, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analgesics, Opioid - chemistry</topic><topic>Analgesics, Opioid - pharmacology</topic><topic>Animals</topic><topic>beta-Arrestins - genetics</topic><topic>beta-Arrestins - metabolism</topic><topic>biased agonism</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>Drug Partial Agonism</topic><topic>GPCR</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mice</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>NMR</topic><topic>opioid</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Stability</topic><topic>Receptors, Opioid, mu - agonists</topic><topic>Receptors, Opioid, mu - genetics</topic><topic>Receptors, Opioid, mu - metabolism</topic><topic>Sf9 Cells</topic><topic>Signal Transduction - drug effects</topic><topic>Structural Biology</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Xiaojing</creatorcontrib><creatorcontrib>Maurel, Damien</creatorcontrib><creatorcontrib>Déméné, Hélène</creatorcontrib><creatorcontrib>Vasiliauskaité-Brooks, Ieva</creatorcontrib><creatorcontrib>Hagelberger, Joanna</creatorcontrib><creatorcontrib>Peysson, Fanny</creatorcontrib><creatorcontrib>Saint-Paul, Julie</creatorcontrib><creatorcontrib>Golebiowski, Jérôme</creatorcontrib><creatorcontrib>Granier, Sébastien</creatorcontrib><creatorcontrib>Sounier, Rémy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Xiaojing</au><au>Maurel, Damien</au><au>Déméné, Hélène</au><au>Vasiliauskaité-Brooks, Ieva</au><au>Hagelberger, Joanna</au><au>Peysson, Fanny</au><au>Saint-Paul, Julie</au><au>Golebiowski, Jérôme</au><au>Granier, Sébastien</au><au>Sounier, Rémy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-10-21</date><risdate>2021</risdate><volume>81</volume><issue>20</issue><spage>4165</spage><epage>4175.e6</epage><pages>4165-4175.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands. [Display omitted] •NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34433090</pmid><doi>10.1016/j.molcel.2021.07.033</doi><orcidid>https://orcid.org/0000-0002-7531-4309</orcidid><orcidid>https://orcid.org/0000-0002-5051-2392</orcidid><orcidid>https://orcid.org/0000-0003-1550-3658</orcidid><orcidid>https://orcid.org/0000-0002-3675-1952</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-10, Vol.81 (20), p.4165-4175.e6
issn 1097-2765
1097-4164
language eng
recordid cdi_hal_primary_oai_HAL_hal_03331072v1
source MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Analgesics, Opioid - chemistry
Analgesics, Opioid - pharmacology
Animals
beta-Arrestins - genetics
beta-Arrestins - metabolism
biased agonism
Binding Sites
Biochemistry, Molecular Biology
Computer-Aided Design
Drug Design
Drug Partial Agonism
GPCR
HEK293 Cells
Humans
Life Sciences
Ligands
Magnetic Resonance Spectroscopy
Mice
molecular dynamics
Molecular Dynamics Simulation
Neurobiology
Neurons and Cognition
NMR
opioid
Protein Binding
Protein Interaction Domains and Motifs
Protein Stability
Receptors, Opioid, mu - agonists
Receptors, Opioid, mu - genetics
Receptors, Opioid, mu - metabolism
Sf9 Cells
Signal Transduction - drug effects
Structural Biology
Structure-Activity Relationship
title Molecular insights into the biased signaling mechanism of the μ-opioid receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20insights%20into%20the%20biased%20signaling%20mechanism%20of%20the%20%CE%BC-opioid%20receptor&rft.jtitle=Molecular%20cell&rft.au=Cong,%20Xiaojing&rft.date=2021-10-21&rft.volume=81&rft.issue=20&rft.spage=4165&rft.epage=4175.e6&rft.pages=4165-4175.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.07.033&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03331072v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34433090&rft_els_id=S1097276521006110&rfr_iscdi=true