Molecular insights into the biased signaling mechanism of the μ-opioid receptor
GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-10, Vol.81 (20), p.4165-4175.e6 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4175.e6 |
---|---|
container_issue | 20 |
container_start_page | 4165 |
container_title | Molecular cell |
container_volume | 81 |
creator | Cong, Xiaojing Maurel, Damien Déméné, Hélène Vasiliauskaité-Brooks, Ieva Hagelberger, Joanna Peysson, Fanny Saint-Paul, Julie Golebiowski, Jérôme Granier, Sébastien Sounier, Rémy |
description | GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
[Display omitted]
•NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody
Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics. |
doi_str_mv | 10.1016/j.molcel.2021.07.033 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03331072v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276521006110</els_id><sourcerecordid>oai_HAL_hal_03331072v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EolC4AULZskgYx06cbJCqCihSESxgbTnOpHGVxFWcVuJunIEzkTSlS1Yezbzv0TxCbigEFGh8vw5qW2msghBCGoAIgLETckEhFT6nMT891KGIowm5dG4NQHmUpOdkwjhnDFK4IO-vtkK9rVTrmcaZVdm5vuis15XoZUY5zL2-3ajKNCuvRl2qxrjas8We-Pn27cZYk3statx0tr0iZ4WqHF4f3in5fHr8mC_85dvzy3y29DXnYedrxjKe5SzMMNSgVKoQEoAkKookS0XIEpWBUKqIQYgIQHNd5AITkeuMD_MpuRv_LVUlN62pVfslrTJyMVvKodfrYBREuKM9y0dWt9a5FotjgIIcZMq1HGXKQaYEsU9Pye0Y22yzGvNj6M9eDzyMAPaH7gy20mmDjcbc9Do6mVvz_4Zf-ZeIUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cong, Xiaojing ; Maurel, Damien ; Déméné, Hélène ; Vasiliauskaité-Brooks, Ieva ; Hagelberger, Joanna ; Peysson, Fanny ; Saint-Paul, Julie ; Golebiowski, Jérôme ; Granier, Sébastien ; Sounier, Rémy</creator><creatorcontrib>Cong, Xiaojing ; Maurel, Damien ; Déméné, Hélène ; Vasiliauskaité-Brooks, Ieva ; Hagelberger, Joanna ; Peysson, Fanny ; Saint-Paul, Julie ; Golebiowski, Jérôme ; Granier, Sébastien ; Sounier, Rémy</creatorcontrib><description>GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
[Display omitted]
•NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody
Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.07.033</identifier><identifier>PMID: 34433090</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Analgesics, Opioid - chemistry ; Analgesics, Opioid - pharmacology ; Animals ; beta-Arrestins - genetics ; beta-Arrestins - metabolism ; biased agonism ; Binding Sites ; Biochemistry, Molecular Biology ; Computer-Aided Design ; Drug Design ; Drug Partial Agonism ; GPCR ; HEK293 Cells ; Humans ; Life Sciences ; Ligands ; Magnetic Resonance Spectroscopy ; Mice ; molecular dynamics ; Molecular Dynamics Simulation ; Neurobiology ; Neurons and Cognition ; NMR ; opioid ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Stability ; Receptors, Opioid, mu - agonists ; Receptors, Opioid, mu - genetics ; Receptors, Opioid, mu - metabolism ; Sf9 Cells ; Signal Transduction - drug effects ; Structural Biology ; Structure-Activity Relationship</subject><ispartof>Molecular cell, 2021-10, Vol.81 (20), p.4165-4175.e6</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</citedby><cites>FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</cites><orcidid>0000-0002-7531-4309 ; 0000-0002-5051-2392 ; 0000-0003-1550-3658 ; 0000-0002-3675-1952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276521006110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34433090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03331072$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cong, Xiaojing</creatorcontrib><creatorcontrib>Maurel, Damien</creatorcontrib><creatorcontrib>Déméné, Hélène</creatorcontrib><creatorcontrib>Vasiliauskaité-Brooks, Ieva</creatorcontrib><creatorcontrib>Hagelberger, Joanna</creatorcontrib><creatorcontrib>Peysson, Fanny</creatorcontrib><creatorcontrib>Saint-Paul, Julie</creatorcontrib><creatorcontrib>Golebiowski, Jérôme</creatorcontrib><creatorcontrib>Granier, Sébastien</creatorcontrib><creatorcontrib>Sounier, Rémy</creatorcontrib><title>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
[Display omitted]
•NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody
Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.</description><subject>Analgesics, Opioid - chemistry</subject><subject>Analgesics, Opioid - pharmacology</subject><subject>Animals</subject><subject>beta-Arrestins - genetics</subject><subject>beta-Arrestins - metabolism</subject><subject>biased agonism</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Computer-Aided Design</subject><subject>Drug Design</subject><subject>Drug Partial Agonism</subject><subject>GPCR</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mice</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>NMR</subject><subject>opioid</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Stability</subject><subject>Receptors, Opioid, mu - agonists</subject><subject>Receptors, Opioid, mu - genetics</subject><subject>Receptors, Opioid, mu - metabolism</subject><subject>Sf9 Cells</subject><subject>Signal Transduction - drug effects</subject><subject>Structural Biology</subject><subject>Structure-Activity Relationship</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFOwzAQRS0EolC4AULZskgYx06cbJCqCihSESxgbTnOpHGVxFWcVuJunIEzkTSlS1Yezbzv0TxCbigEFGh8vw5qW2msghBCGoAIgLETckEhFT6nMT891KGIowm5dG4NQHmUpOdkwjhnDFK4IO-vtkK9rVTrmcaZVdm5vuis15XoZUY5zL2-3ajKNCuvRl2qxrjas8We-Pn27cZYk3statx0tr0iZ4WqHF4f3in5fHr8mC_85dvzy3y29DXnYedrxjKe5SzMMNSgVKoQEoAkKookS0XIEpWBUKqIQYgIQHNd5AITkeuMD_MpuRv_LVUlN62pVfslrTJyMVvKodfrYBREuKM9y0dWt9a5FotjgIIcZMq1HGXKQaYEsU9Pye0Y22yzGvNj6M9eDzyMAPaH7gy20mmDjcbc9Do6mVvz_4Zf-ZeIUw</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Cong, Xiaojing</creator><creator>Maurel, Damien</creator><creator>Déméné, Hélène</creator><creator>Vasiliauskaité-Brooks, Ieva</creator><creator>Hagelberger, Joanna</creator><creator>Peysson, Fanny</creator><creator>Saint-Paul, Julie</creator><creator>Golebiowski, Jérôme</creator><creator>Granier, Sébastien</creator><creator>Sounier, Rémy</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7531-4309</orcidid><orcidid>https://orcid.org/0000-0002-5051-2392</orcidid><orcidid>https://orcid.org/0000-0003-1550-3658</orcidid><orcidid>https://orcid.org/0000-0002-3675-1952</orcidid></search><sort><creationdate>20211021</creationdate><title>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</title><author>Cong, Xiaojing ; Maurel, Damien ; Déméné, Hélène ; Vasiliauskaité-Brooks, Ieva ; Hagelberger, Joanna ; Peysson, Fanny ; Saint-Paul, Julie ; Golebiowski, Jérôme ; Granier, Sébastien ; Sounier, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-c33b4bd32be2c0aa9ae080085ff8b97238ab07aaf6077500c4cfd7e87dcb49723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analgesics, Opioid - chemistry</topic><topic>Analgesics, Opioid - pharmacology</topic><topic>Animals</topic><topic>beta-Arrestins - genetics</topic><topic>beta-Arrestins - metabolism</topic><topic>biased agonism</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Computer-Aided Design</topic><topic>Drug Design</topic><topic>Drug Partial Agonism</topic><topic>GPCR</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mice</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>NMR</topic><topic>opioid</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Stability</topic><topic>Receptors, Opioid, mu - agonists</topic><topic>Receptors, Opioid, mu - genetics</topic><topic>Receptors, Opioid, mu - metabolism</topic><topic>Sf9 Cells</topic><topic>Signal Transduction - drug effects</topic><topic>Structural Biology</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Xiaojing</creatorcontrib><creatorcontrib>Maurel, Damien</creatorcontrib><creatorcontrib>Déméné, Hélène</creatorcontrib><creatorcontrib>Vasiliauskaité-Brooks, Ieva</creatorcontrib><creatorcontrib>Hagelberger, Joanna</creatorcontrib><creatorcontrib>Peysson, Fanny</creatorcontrib><creatorcontrib>Saint-Paul, Julie</creatorcontrib><creatorcontrib>Golebiowski, Jérôme</creatorcontrib><creatorcontrib>Granier, Sébastien</creatorcontrib><creatorcontrib>Sounier, Rémy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Xiaojing</au><au>Maurel, Damien</au><au>Déméné, Hélène</au><au>Vasiliauskaité-Brooks, Ieva</au><au>Hagelberger, Joanna</au><au>Peysson, Fanny</au><au>Saint-Paul, Julie</au><au>Golebiowski, Jérôme</au><au>Granier, Sébastien</au><au>Sounier, Rémy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular insights into the biased signaling mechanism of the μ-opioid receptor</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-10-21</date><risdate>2021</risdate><volume>81</volume><issue>20</issue><spage>4165</spage><epage>4175.e6</epage><pages>4165-4175.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
[Display omitted]
•NMR and MD simulations help define the molecular mechanisms of μOR-biased signaling•Biased, unbiased, and partial agonists stabilize different μOR conformations•Biased agonists stabilize specific conformations in the TM7, ICL1, and H8 domains•The bias in conformation persists after binding to a G protein mimetic nanobody
Biased ligands of GPCRs offer new drug design strategies to enhance beneficial drug actions while reducing side effects. Cong et al. combined molecular simulations, NMR spectroscopy, and functional assays to uncover the molecular mechanism of ligand bias in the μ-opioid receptor, which provides structural basis for designing better opioid analgesics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34433090</pmid><doi>10.1016/j.molcel.2021.07.033</doi><orcidid>https://orcid.org/0000-0002-7531-4309</orcidid><orcidid>https://orcid.org/0000-0002-5051-2392</orcidid><orcidid>https://orcid.org/0000-0003-1550-3658</orcidid><orcidid>https://orcid.org/0000-0002-3675-1952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-10, Vol.81 (20), p.4165-4175.e6 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03331072v1 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Analgesics, Opioid - chemistry Analgesics, Opioid - pharmacology Animals beta-Arrestins - genetics beta-Arrestins - metabolism biased agonism Binding Sites Biochemistry, Molecular Biology Computer-Aided Design Drug Design Drug Partial Agonism GPCR HEK293 Cells Humans Life Sciences Ligands Magnetic Resonance Spectroscopy Mice molecular dynamics Molecular Dynamics Simulation Neurobiology Neurons and Cognition NMR opioid Protein Binding Protein Interaction Domains and Motifs Protein Stability Receptors, Opioid, mu - agonists Receptors, Opioid, mu - genetics Receptors, Opioid, mu - metabolism Sf9 Cells Signal Transduction - drug effects Structural Biology Structure-Activity Relationship |
title | Molecular insights into the biased signaling mechanism of the μ-opioid receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20insights%20into%20the%20biased%20signaling%20mechanism%20of%20the%20%CE%BC-opioid%20receptor&rft.jtitle=Molecular%20cell&rft.au=Cong,%20Xiaojing&rft.date=2021-10-21&rft.volume=81&rft.issue=20&rft.spage=4165&rft.epage=4175.e6&rft.pages=4165-4175.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.07.033&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03331072v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34433090&rft_els_id=S1097276521006110&rfr_iscdi=true |