Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps

Background Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2022-01, Vol.62 (1), p.101-115
Hauptverfasser: Bieberdorf, N., Roytershteyn, V., Villani, A., Taupin, V., Capolungo, L., Antoniou, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 101
container_title Experimental mechanics
container_volume 62
creator Bieberdorf, N.
Roytershteyn, V.
Villani, A.
Taupin, V.
Capolungo, L.
Antoniou, A.
description Background Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution. Objective With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals. Methods First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields. Results Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings. Conclusions When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.
doi_str_mv 10.1007/s11340-021-00764-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03330054v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616981588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCJw_RTJL9OpZabaFFheo1pNmkbtlu1mRbbX-9qSt68zTM8Lwvw4PQJZAbICS99QCME0wo4LAmHO-PUA9SDpimSXyMeoQAxzyL4RSdeb8igWIp7SE9tx_SFT563si6LVvZllsdDd3Ot7KKnirp21KV7S6a2UJX0ausyiIwto5efFkvo9Fno1251vUBn9S4qWStozttrFt33Ew2_hydGFl5ffEz-2h-P5oPx3j6-DAZDqZYsZi1mKscONUJ14oA1QXPVZIBl4VSModCUUbT3GQ6ThnJmTYkMwtlOF-YHBLJWB9dd7VvshJNeEu6nbCyFOPBVBxuhDFGSMy3ENirjm2cfd9o34qV3bg6fCdoAkmeQZxlgaIdpZz13mnzWwtEHMyLzrwI5sW3ebEPIdaFfIDrpXZ_1f-kvgBiq4dc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981588</pqid></control><display><type>article</type><title>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bieberdorf, N. ; Roytershteyn, V. ; Villani, A. ; Taupin, V. ; Capolungo, L. ; Antoniou, A.</creator><creatorcontrib>Bieberdorf, N. ; Roytershteyn, V. ; Villani, A. ; Taupin, V. ; Capolungo, L. ; Antoniou, A.</creatorcontrib><description>Background Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution. Objective With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals. Methods First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields. Results Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings. Conclusions When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-021-00764-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Aluminum base alloys ; Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Condensed Matter ; Constitutive models ; Control ; Deformation ; Diameters ; Digital imaging ; Dynamical Systems ; Engineering ; Errors ; Grain size ; Image acquisition ; Lasers ; Materials Science ; Mathematical models ; Optical Devices ; Optics ; Parameters ; Photonics ; Physics ; Plastic properties ; Polycrystals ; Research Paper ; Simulation ; Solid Mechanics ; Spatial resolution ; Speckle patterns ; Strain ; Vibration</subject><ispartof>Experimental mechanics, 2022-01, Vol.62 (1), p.101-115</ispartof><rights>Society for Experimental Mechanics 2021</rights><rights>Society for Experimental Mechanics 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</citedby><cites>FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</cites><orcidid>0000-0002-5270-5438 ; 0000-0002-2469-0179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-021-00764-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-021-00764-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03330054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bieberdorf, N.</creatorcontrib><creatorcontrib>Roytershteyn, V.</creatorcontrib><creatorcontrib>Villani, A.</creatorcontrib><creatorcontrib>Taupin, V.</creatorcontrib><creatorcontrib>Capolungo, L.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><title>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution. Objective With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals. Methods First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields. Results Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings. Conclusions When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aluminum base alloys</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter</subject><subject>Constitutive models</subject><subject>Control</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Digital imaging</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Errors</subject><subject>Grain size</subject><subject>Image acquisition</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Physics</subject><subject>Plastic properties</subject><subject>Polycrystals</subject><subject>Research Paper</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Spatial resolution</subject><subject>Speckle patterns</subject><subject>Strain</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCJw_RTJL9OpZabaFFheo1pNmkbtlu1mRbbX-9qSt68zTM8Lwvw4PQJZAbICS99QCME0wo4LAmHO-PUA9SDpimSXyMeoQAxzyL4RSdeb8igWIp7SE9tx_SFT563si6LVvZllsdDd3Ot7KKnirp21KV7S6a2UJX0ausyiIwto5efFkvo9Fno1251vUBn9S4qWStozttrFt33Ew2_hydGFl5ffEz-2h-P5oPx3j6-DAZDqZYsZi1mKscONUJ14oA1QXPVZIBl4VSModCUUbT3GQ6ThnJmTYkMwtlOF-YHBLJWB9dd7VvshJNeEu6nbCyFOPBVBxuhDFGSMy3ENirjm2cfd9o34qV3bg6fCdoAkmeQZxlgaIdpZz13mnzWwtEHMyLzrwI5sW3ebEPIdaFfIDrpXZ_1f-kvgBiq4dc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bieberdorf, N.</creator><creator>Roytershteyn, V.</creator><creator>Villani, A.</creator><creator>Taupin, V.</creator><creator>Capolungo, L.</creator><creator>Antoniou, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Society for Experimental Mechanics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5270-5438</orcidid><orcidid>https://orcid.org/0000-0002-2469-0179</orcidid></search><sort><creationdate>20220101</creationdate><title>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</title><author>Bieberdorf, N. ; Roytershteyn, V. ; Villani, A. ; Taupin, V. ; Capolungo, L. ; Antoniou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aluminum base alloys</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter</topic><topic>Constitutive models</topic><topic>Control</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Digital imaging</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Errors</topic><topic>Grain size</topic><topic>Image acquisition</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Physics</topic><topic>Plastic properties</topic><topic>Polycrystals</topic><topic>Research Paper</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Spatial resolution</topic><topic>Speckle patterns</topic><topic>Strain</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieberdorf, N.</creatorcontrib><creatorcontrib>Roytershteyn, V.</creatorcontrib><creatorcontrib>Villani, A.</creatorcontrib><creatorcontrib>Taupin, V.</creatorcontrib><creatorcontrib>Capolungo, L.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieberdorf, N.</au><au>Roytershteyn, V.</au><au>Villani, A.</au><au>Taupin, V.</au><au>Capolungo, L.</au><au>Antoniou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>62</volume><issue>1</issue><spage>101</spage><epage>115</epage><pages>101-115</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution. Objective With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals. Methods First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields. Results Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings. Conclusions When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-021-00764-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5270-5438</orcidid><orcidid>https://orcid.org/0000-0002-2469-0179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2022-01, Vol.62 (1), p.101-115
issn 0014-4851
1741-2765
language eng
recordid cdi_hal_primary_oai_HAL_hal_03330054v1
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Aluminum base alloys
Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Condensed Matter
Constitutive models
Control
Deformation
Diameters
Digital imaging
Dynamical Systems
Engineering
Errors
Grain size
Image acquisition
Lasers
Materials Science
Mathematical models
Optical Devices
Optics
Parameters
Photonics
Physics
Plastic properties
Polycrystals
Research Paper
Simulation
Solid Mechanics
Spatial resolution
Speckle patterns
Strain
Vibration
title Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Quantitative%20Crystal%20Plasticity%20Model%20Validation%20Using%20Experimental%20In-plane%20Deformation%20Maps&rft.jtitle=Experimental%20mechanics&rft.au=Bieberdorf,%20N.&rft.date=2022-01-01&rft.volume=62&rft.issue=1&rft.spage=101&rft.epage=115&rft.pages=101-115&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-021-00764-z&rft_dat=%3Cproquest_hal_p%3E2616981588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981588&rft_id=info:pmid/&rfr_iscdi=true