Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps
Background Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on charac...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2022-01, Vol.62 (1), p.101-115 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Experimental mechanics |
container_volume | 62 |
creator | Bieberdorf, N. Roytershteyn, V. Villani, A. Taupin, V. Capolungo, L. Antoniou, A. |
description | Background
Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution.
Objective
With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals.
Methods
First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields.
Results
Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings.
Conclusions
When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed. |
doi_str_mv | 10.1007/s11340-021-00764-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03330054v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616981588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCJw_RTJL9OpZabaFFheo1pNmkbtlu1mRbbX-9qSt68zTM8Lwvw4PQJZAbICS99QCME0wo4LAmHO-PUA9SDpimSXyMeoQAxzyL4RSdeb8igWIp7SE9tx_SFT563si6LVvZllsdDd3Ot7KKnirp21KV7S6a2UJX0ausyiIwto5efFkvo9Fno1251vUBn9S4qWStozttrFt33Ew2_hydGFl5ffEz-2h-P5oPx3j6-DAZDqZYsZi1mKscONUJ14oA1QXPVZIBl4VSModCUUbT3GQ6ThnJmTYkMwtlOF-YHBLJWB9dd7VvshJNeEu6nbCyFOPBVBxuhDFGSMy3ENirjm2cfd9o34qV3bg6fCdoAkmeQZxlgaIdpZz13mnzWwtEHMyLzrwI5sW3ebEPIdaFfIDrpXZ_1f-kvgBiq4dc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616981588</pqid></control><display><type>article</type><title>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bieberdorf, N. ; Roytershteyn, V. ; Villani, A. ; Taupin, V. ; Capolungo, L. ; Antoniou, A.</creator><creatorcontrib>Bieberdorf, N. ; Roytershteyn, V. ; Villani, A. ; Taupin, V. ; Capolungo, L. ; Antoniou, A.</creatorcontrib><description>Background
Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution.
Objective
With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals.
Methods
First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields.
Results
Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings.
Conclusions
When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-021-00764-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Aluminum base alloys ; Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Condensed Matter ; Constitutive models ; Control ; Deformation ; Diameters ; Digital imaging ; Dynamical Systems ; Engineering ; Errors ; Grain size ; Image acquisition ; Lasers ; Materials Science ; Mathematical models ; Optical Devices ; Optics ; Parameters ; Photonics ; Physics ; Plastic properties ; Polycrystals ; Research Paper ; Simulation ; Solid Mechanics ; Spatial resolution ; Speckle patterns ; Strain ; Vibration</subject><ispartof>Experimental mechanics, 2022-01, Vol.62 (1), p.101-115</ispartof><rights>Society for Experimental Mechanics 2021</rights><rights>Society for Experimental Mechanics 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</citedby><cites>FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</cites><orcidid>0000-0002-5270-5438 ; 0000-0002-2469-0179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-021-00764-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-021-00764-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-03330054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bieberdorf, N.</creatorcontrib><creatorcontrib>Roytershteyn, V.</creatorcontrib><creatorcontrib>Villani, A.</creatorcontrib><creatorcontrib>Taupin, V.</creatorcontrib><creatorcontrib>Capolungo, L.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><title>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background
Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution.
Objective
With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals.
Methods
First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields.
Results
Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings.
Conclusions
When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Aluminum base alloys</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter</subject><subject>Constitutive models</subject><subject>Control</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Digital imaging</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Errors</subject><subject>Grain size</subject><subject>Image acquisition</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Physics</subject><subject>Plastic properties</subject><subject>Polycrystals</subject><subject>Research Paper</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Spatial resolution</subject><subject>Speckle patterns</subject><subject>Strain</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCJw_RTJL9OpZabaFFheo1pNmkbtlu1mRbbX-9qSt68zTM8Lwvw4PQJZAbICS99QCME0wo4LAmHO-PUA9SDpimSXyMeoQAxzyL4RSdeb8igWIp7SE9tx_SFT563si6LVvZllsdDd3Ot7KKnirp21KV7S6a2UJX0ausyiIwto5efFkvo9Fno1251vUBn9S4qWStozttrFt33Ew2_hydGFl5ffEz-2h-P5oPx3j6-DAZDqZYsZi1mKscONUJ14oA1QXPVZIBl4VSModCUUbT3GQ6ThnJmTYkMwtlOF-YHBLJWB9dd7VvshJNeEu6nbCyFOPBVBxuhDFGSMy3ENirjm2cfd9o34qV3bg6fCdoAkmeQZxlgaIdpZz13mnzWwtEHMyLzrwI5sW3ebEPIdaFfIDrpXZ_1f-kvgBiq4dc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bieberdorf, N.</creator><creator>Roytershteyn, V.</creator><creator>Villani, A.</creator><creator>Taupin, V.</creator><creator>Capolungo, L.</creator><creator>Antoniou, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Society for Experimental Mechanics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5270-5438</orcidid><orcidid>https://orcid.org/0000-0002-2469-0179</orcidid></search><sort><creationdate>20220101</creationdate><title>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</title><author>Bieberdorf, N. ; Roytershteyn, V. ; Villani, A. ; Taupin, V. ; Capolungo, L. ; Antoniou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-4c9142e64ec012ed49c6814adcca91dc23279f8e573093ef08fbcf44bf916a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Aluminum base alloys</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter</topic><topic>Constitutive models</topic><topic>Control</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Digital imaging</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Errors</topic><topic>Grain size</topic><topic>Image acquisition</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Physics</topic><topic>Plastic properties</topic><topic>Polycrystals</topic><topic>Research Paper</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Spatial resolution</topic><topic>Speckle patterns</topic><topic>Strain</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bieberdorf, N.</creatorcontrib><creatorcontrib>Roytershteyn, V.</creatorcontrib><creatorcontrib>Villani, A.</creatorcontrib><creatorcontrib>Taupin, V.</creatorcontrib><creatorcontrib>Capolungo, L.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bieberdorf, N.</au><au>Roytershteyn, V.</au><au>Villani, A.</au><au>Taupin, V.</au><au>Capolungo, L.</au><au>Antoniou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>62</volume><issue>1</issue><spage>101</spage><epage>115</epage><pages>101-115</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background
Mechanistically based constitutive models incorporate several key parameters that describe the macroscopic response and microstructure evolution of a polycrystalline metal alloy under external loading. To date, careful calibration of these parameters has for the most part relied on characterization methods that lack spatial resolution.
Objective
With the intent of facilitating future model development, this work investigates feasibility of using Digital Image Correlation (DIC) to characterize realistic strain fields in polycrystalline metals.
Methods
First, crystal plasticity based simulations are used to obtain displacement and strain fields in a polycrystalline aluminum alloy with average grain size ~ 200 µm under uniaxial tension up to 10% macroscopic strain. Second, random speckle patterns are generated on a metal alloy surface and their optical images are acquired. The images are numerically deformed according to the displacement field predicted by the model. DIC strain maps are obtained using standard methods with subset diameter within 15–50% of the grain size and are compared against the applied fields.
Results
Overall, the results demonstrate that DIC is capable of obtaining sufficiently accurate strain fields to validate or challenge simulations. At various applied strain magnitudes, DIC strain maps measured from a high-quality pattern are able to reproduce over 95% of the simulation strain field with relative errors less than 10%, and over 60% of the simulation strain field with relative errors less than 5%. Achieving this level accuracy relies on the proper DIC analysis settings.
Conclusions
When the deformation is locally homogeneous, the DIC accuracy increases as the subset window size increases. In contrast, in regions where strain within each subset is highly localized, DIC accuracy increases as the subset window decreases. Suggestions for improving standard DIC algorithms to enable quantitative model-data comparison are discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-021-00764-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5270-5438</orcidid><orcidid>https://orcid.org/0000-0002-2469-0179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2022-01, Vol.62 (1), p.101-115 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03330054v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Algorithms Aluminum base alloys Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Condensed Matter Constitutive models Control Deformation Diameters Digital imaging Dynamical Systems Engineering Errors Grain size Image acquisition Lasers Materials Science Mathematical models Optical Devices Optics Parameters Photonics Physics Plastic properties Polycrystals Research Paper Simulation Solid Mechanics Spatial resolution Speckle patterns Strain Vibration |
title | Towards Quantitative Crystal Plasticity Model Validation Using Experimental In-plane Deformation Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Quantitative%20Crystal%20Plasticity%20Model%20Validation%20Using%20Experimental%20In-plane%20Deformation%20Maps&rft.jtitle=Experimental%20mechanics&rft.au=Bieberdorf,%20N.&rft.date=2022-01-01&rft.volume=62&rft.issue=1&rft.spage=101&rft.epage=115&rft.pages=101-115&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-021-00764-z&rft_dat=%3Cproquest_hal_p%3E2616981588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616981588&rft_id=info:pmid/&rfr_iscdi=true |