Spontaneous capillary flow in curved, open microchannels

Capillary flows are increasingly used in biotechnology, biology, chemistry, energy and space applications. Motivated by these new developments, designs of capillary channels have become more sophisticated. In particular, capillary microsystems often use winding channels for reasons such as compactne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2016-07, Vol.20 (7), p.1, Article 100
Hauptverfasser: Berthier, Jean, Brakke, Kenneth A., Gosselin, David, Navarro, Fabrice, Belgacem, Naceur, Chaussy, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Microfluidics and nanofluidics
container_volume 20
creator Berthier, Jean
Brakke, Kenneth A.
Gosselin, David
Navarro, Fabrice
Belgacem, Naceur
Chaussy, Didier
description Capillary flows are increasingly used in biotechnology, biology, chemistry, energy and space applications. Motivated by these new developments, designs of capillary channels have become more sophisticated. In particular, capillary microsystems often use winding channels for reasons such as compactness, or mixing. The behavior of capillary microflows in curved channels is still underdeveloped. In this work, we investigate this type of behavior. In the case of suspended capillary flows, is shown that the flow profile in the curved section is approximately analogous to that in a rectilinear section. In the case of open U-grooves where inner corners are present, the importance of the turn sharpness and of the presence of capillary filaments is pointed out. For sharp turns, and/or in the presence of precursor capillary filaments, we found the phenomenon that the inner filament precedes the outer filament in the channel. Analysis of the capillary flow in curved channels is performed experimentally using rectangular U-grooves and suspended channels. The experimental observations are compared to Surface Evolver numerical software results.
doi_str_mv 10.1007/s10404-016-1766-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03326212v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4100455041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-1e6a064ea3e855c029fb3041151ab010344a2f8932fb64bee4783324ccd5aca83</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCJ8HoTJLN7h5LUSsUPKjnkE2zdss2WZNuxX9vyop48TTD8L3Hm0fIJcItAhR3EUGAoICSYiEllUdkghI5FVUFx797yU7JWYwbAFEwhAkpX3rvdtpZP8TM6L7tOh2-sqbzn1nrMjOEvV3dZL63Ltu2Jniz1s7ZLp6Tk0Z30V78zCl5e7h_nS_o8vnxaT5bUsPLYkfRSg1SWM1tmecGWNXUHARijroGBC6EZk1ZcdbUUtTWiqLknAljVrk2uuRTcj36rnWn-tBuUzzldasWs6U63CDhkiHbY2KvRrYP_mOwcac2fgguxVNYVJVgheQiUThS6ZsYg21-bRHUoUw1lqlSmepQppJJw0ZNTKx7t-GP87-ibxXVdQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799427634</pqid></control><display><type>article</type><title>Spontaneous capillary flow in curved, open microchannels</title><source>SpringerLink (Online service)</source><creator>Berthier, Jean ; Brakke, Kenneth A. ; Gosselin, David ; Navarro, Fabrice ; Belgacem, Naceur ; Chaussy, Didier</creator><creatorcontrib>Berthier, Jean ; Brakke, Kenneth A. ; Gosselin, David ; Navarro, Fabrice ; Belgacem, Naceur ; Chaussy, Didier</creatorcontrib><description>Capillary flows are increasingly used in biotechnology, biology, chemistry, energy and space applications. Motivated by these new developments, designs of capillary channels have become more sophisticated. In particular, capillary microsystems often use winding channels for reasons such as compactness, or mixing. The behavior of capillary microflows in curved channels is still underdeveloped. In this work, we investigate this type of behavior. In the case of suspended capillary flows, is shown that the flow profile in the curved section is approximately analogous to that in a rectilinear section. In the case of open U-grooves where inner corners are present, the importance of the turn sharpness and of the presence of capillary filaments is pointed out. For sharp turns, and/or in the presence of precursor capillary filaments, we found the phenomenon that the inner filament precedes the outer filament in the channel. Analysis of the capillary flow in curved channels is performed experimentally using rectangular U-grooves and suspended channels. The experimental observations are compared to Surface Evolver numerical software results.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-016-1766-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Biotechnology ; Chemical and Process Engineering ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Flow profiles ; Materials ; Nanotechnology and Microengineering ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2016-07, Vol.20 (7), p.1, Article 100</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-1e6a064ea3e855c029fb3041151ab010344a2f8932fb64bee4783324ccd5aca83</citedby><cites>FETCH-LOGICAL-c387t-1e6a064ea3e855c029fb3041151ab010344a2f8932fb64bee4783324ccd5aca83</cites><orcidid>0000-0002-3317-7369 ; 0000-0002-8661-3689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-016-1766-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-016-1766-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03326212$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthier, Jean</creatorcontrib><creatorcontrib>Brakke, Kenneth A.</creatorcontrib><creatorcontrib>Gosselin, David</creatorcontrib><creatorcontrib>Navarro, Fabrice</creatorcontrib><creatorcontrib>Belgacem, Naceur</creatorcontrib><creatorcontrib>Chaussy, Didier</creatorcontrib><title>Spontaneous capillary flow in curved, open microchannels</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Capillary flows are increasingly used in biotechnology, biology, chemistry, energy and space applications. Motivated by these new developments, designs of capillary channels have become more sophisticated. In particular, capillary microsystems often use winding channels for reasons such as compactness, or mixing. The behavior of capillary microflows in curved channels is still underdeveloped. In this work, we investigate this type of behavior. In the case of suspended capillary flows, is shown that the flow profile in the curved section is approximately analogous to that in a rectilinear section. In the case of open U-grooves where inner corners are present, the importance of the turn sharpness and of the presence of capillary filaments is pointed out. For sharp turns, and/or in the presence of precursor capillary filaments, we found the phenomenon that the inner filament precedes the outer filament in the channel. Analysis of the capillary flow in curved channels is performed experimentally using rectangular U-grooves and suspended channels. The experimental observations are compared to Surface Evolver numerical software results.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biotechnology</subject><subject>Chemical and Process Engineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Flow profiles</subject><subject>Materials</subject><subject>Nanotechnology and Microengineering</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuCJ8HoTJLN7h5LUSsUPKjnkE2zdss2WZNuxX9vyop48TTD8L3Hm0fIJcItAhR3EUGAoICSYiEllUdkghI5FVUFx797yU7JWYwbAFEwhAkpX3rvdtpZP8TM6L7tOh2-sqbzn1nrMjOEvV3dZL63Ltu2Jniz1s7ZLp6Tk0Z30V78zCl5e7h_nS_o8vnxaT5bUsPLYkfRSg1SWM1tmecGWNXUHARijroGBC6EZk1ZcdbUUtTWiqLknAljVrk2uuRTcj36rnWn-tBuUzzldasWs6U63CDhkiHbY2KvRrYP_mOwcac2fgguxVNYVJVgheQiUThS6ZsYg21-bRHUoUw1lqlSmepQppJJw0ZNTKx7t-GP87-ibxXVdQI</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Berthier, Jean</creator><creator>Brakke, Kenneth A.</creator><creator>Gosselin, David</creator><creator>Navarro, Fabrice</creator><creator>Belgacem, Naceur</creator><creator>Chaussy, Didier</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3317-7369</orcidid><orcidid>https://orcid.org/0000-0002-8661-3689</orcidid></search><sort><creationdate>20160701</creationdate><title>Spontaneous capillary flow in curved, open microchannels</title><author>Berthier, Jean ; Brakke, Kenneth A. ; Gosselin, David ; Navarro, Fabrice ; Belgacem, Naceur ; Chaussy, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-1e6a064ea3e855c029fb3041151ab010344a2f8932fb64bee4783324ccd5aca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biotechnology</topic><topic>Chemical and Process Engineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Flow profiles</topic><topic>Materials</topic><topic>Nanotechnology and Microengineering</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthier, Jean</creatorcontrib><creatorcontrib>Brakke, Kenneth A.</creatorcontrib><creatorcontrib>Gosselin, David</creatorcontrib><creatorcontrib>Navarro, Fabrice</creatorcontrib><creatorcontrib>Belgacem, Naceur</creatorcontrib><creatorcontrib>Chaussy, Didier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthier, Jean</au><au>Brakke, Kenneth A.</au><au>Gosselin, David</au><au>Navarro, Fabrice</au><au>Belgacem, Naceur</au><au>Chaussy, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous capillary flow in curved, open microchannels</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>20</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>100</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Capillary flows are increasingly used in biotechnology, biology, chemistry, energy and space applications. Motivated by these new developments, designs of capillary channels have become more sophisticated. In particular, capillary microsystems often use winding channels for reasons such as compactness, or mixing. The behavior of capillary microflows in curved channels is still underdeveloped. In this work, we investigate this type of behavior. In the case of suspended capillary flows, is shown that the flow profile in the curved section is approximately analogous to that in a rectilinear section. In the case of open U-grooves where inner corners are present, the importance of the turn sharpness and of the presence of capillary filaments is pointed out. For sharp turns, and/or in the presence of precursor capillary filaments, we found the phenomenon that the inner filament precedes the outer filament in the channel. Analysis of the capillary flow in curved channels is performed experimentally using rectangular U-grooves and suspended channels. The experimental observations are compared to Surface Evolver numerical software results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-016-1766-6</doi><orcidid>https://orcid.org/0000-0002-3317-7369</orcidid><orcidid>https://orcid.org/0000-0002-8661-3689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2016-07, Vol.20 (7), p.1, Article 100
issn 1613-4982
1613-4990
language eng
recordid cdi_hal_primary_oai_HAL_hal_03326212v1
source SpringerLink (Online service)
subjects Analytical Chemistry
Biomedical Engineering and Bioengineering
Biotechnology
Chemical and Process Engineering
Engineering
Engineering Fluid Dynamics
Engineering Sciences
Flow profiles
Materials
Nanotechnology and Microengineering
Research Paper
title Spontaneous capillary flow in curved, open microchannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20capillary%20flow%20in%20curved,%20open%20microchannels&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Berthier,%20Jean&rft.date=2016-07-01&rft.volume=20&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=100&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-016-1766-6&rft_dat=%3Cproquest_hal_p%3E4100455041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799427634&rft_id=info:pmid/&rfr_iscdi=true