Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data

Ozone distributions from state‐of‐the‐art global three‐dimensional chemistry transport models are compared to O3 data collected on Airbus A340 passenger aircraft as part of the Measurement of Ozone and Water Vapor by Airbus In‐Service Aircraft (MOZAIC) project. The model results are compared to mont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research, Washington, DC Washington, DC, 2000-01, Vol.105 (D1), p.1503-1525
Hauptverfasser: Law, K. S., Plantevin, P.‐H., Thouret, V., Marenco, A., Asman, W. A. H., Lawrence, M., Crutzen, P. J., Muller, J.‐F., Hauglustaine, D. A., Kanakidou, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1525
container_issue D1
container_start_page 1503
container_title Journal of Geophysical Research, Washington, DC
container_volume 105
creator Law, K. S.
Plantevin, P.‐H.
Thouret, V.
Marenco, A.
Asman, W. A. H.
Lawrence, M.
Crutzen, P. J.
Muller, J.‐F.
Hauglustaine, D. A.
Kanakidou, M.
description Ozone distributions from state‐of‐the‐art global three‐dimensional chemistry transport models are compared to O3 data collected on Airbus A340 passenger aircraft as part of the Measurement of Ozone and Water Vapor by Airbus In‐Service Aircraft (MOZAIC) project. The model results are compared to monthly averaged data at cruise altitudes in the upper troposphere and lower stratosphere and monthly averaged vertical profiles collected over particular cities during takeoff and landing. The models generally show good agreement with the data in regions which have previously been well documented and where the meteorology is well understood/captured by meteorological models (e.g., over Europe). However, in the upper troposphere and lower stratosphere, models often fail to capture sharp gradients across the tropopause and from the subtropics to the tropics. In some models, this is related to deficiencies in model transport schemes and upper boundary conditions. Also, regions of the globe where our understanding of meteorology is poorer and emissions are less well known (e.g., tropics, continental Africa, Asia, and South America) are not simulated as well by all models. At particular measurement locations, it is apparent that emission inventories used by some global models underestimate emissions in certain regions (e.g., over southern Asia) or have incorrect seasonal variations (e.g., biomass burning over South America). Deficiencies in chemical schemes may also explain differences between models and the data.
doi_str_mv 10.1029/1999JD900474
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03324307v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18085865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4464-419e238e7800058f4aa33e68ca7857c8c1c095c2404eec89b40b4c45860289913</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEEqO2Ox7AC4SoRMC3JPZylMLMVFNG4tJKbKwTzwkNeOLBTtoOT8Ejk5CqsMIbS8ff_0k-f5I8Y_Q1o1y_YVrr8zNNqSzko2TGWZannFP-OJlRJlVKOS-eJicxfqPDkVkuKZslv0q_20Noom9Jhd0tYku-Ol-BI_Yad03swoF0Adq496EjO79FRwLG3nWRQLslFwixD7jDtiO-JpufvsU_D1fQYSCXMORIdSDzJlR9JKs2_YjhprE4TmyAuiMvLzZf5qvylGyhg-PkSQ0u4sn9fZR8fvf2U7lM15vFqpyvUytlLlPJNHKhsFDDZzJVSwAhMFcWCpUVVllmqc4sl1QiWqUrSStpZaZyypXWTBwlp5P3GpzZh2YH4WA8NGY5X5txRoXgUtDiZmRfTOw--B89xs4Mi7HoHLTo-2iYomowZwP4agJt8DEGrB_MjJqxJfNvSwP-_N4L0YKrhzXbJv7N8JwLoQeMT9ht4_DwX6U5X3w4K6ge3ekUGirEu4cQhO8mL0SRmav3C7PUJWd5qcyl-A33Xq1i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18085865</pqid></control><display><type>article</type><title>Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Law, K. S. ; Plantevin, P.‐H. ; Thouret, V. ; Marenco, A. ; Asman, W. A. H. ; Lawrence, M. ; Crutzen, P. J. ; Muller, J.‐F. ; Hauglustaine, D. A. ; Kanakidou, M.</creator><creatorcontrib>Law, K. S. ; Plantevin, P.‐H. ; Thouret, V. ; Marenco, A. ; Asman, W. A. H. ; Lawrence, M. ; Crutzen, P. J. ; Muller, J.‐F. ; Hauglustaine, D. A. ; Kanakidou, M.</creatorcontrib><description>Ozone distributions from state‐of‐the‐art global three‐dimensional chemistry transport models are compared to O3 data collected on Airbus A340 passenger aircraft as part of the Measurement of Ozone and Water Vapor by Airbus In‐Service Aircraft (MOZAIC) project. The model results are compared to monthly averaged data at cruise altitudes in the upper troposphere and lower stratosphere and monthly averaged vertical profiles collected over particular cities during takeoff and landing. The models generally show good agreement with the data in regions which have previously been well documented and where the meteorology is well understood/captured by meteorological models (e.g., over Europe). However, in the upper troposphere and lower stratosphere, models often fail to capture sharp gradients across the tropopause and from the subtropics to the tropics. In some models, this is related to deficiencies in model transport schemes and upper boundary conditions. Also, regions of the globe where our understanding of meteorology is poorer and emissions are less well known (e.g., tropics, continental Africa, Asia, and South America) are not simulated as well by all models. At particular measurement locations, it is apparent that emission inventories used by some global models underestimate emissions in certain regions (e.g., over southern Asia) or have incorrect seasonal variations (e.g., biomass burning over South America). Deficiencies in chemical schemes may also explain differences between models and the data.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/1999JD900474</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Chemical composition and interactions. Ionic interactions and processes ; Continental interfaces, environment ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Ocean, Atmosphere ; Sciences of the Universe</subject><ispartof>Journal of Geophysical Research, Washington, DC, 2000-01, Vol.105 (D1), p.1503-1525</ispartof><rights>Copyright 2000 by the American Geophysical Union.</rights><rights>2000 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4464-419e238e7800058f4aa33e68ca7857c8c1c095c2404eec89b40b4c45860289913</citedby><cites>FETCH-LOGICAL-c4464-419e238e7800058f4aa33e68ca7857c8c1c095c2404eec89b40b4c45860289913</cites><orcidid>0000-0003-4479-903X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1999JD900474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1999JD900474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,11519,27929,27930,45579,45580,46414,46473,46838,46897</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1262339$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03324307$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Law, K. S.</creatorcontrib><creatorcontrib>Plantevin, P.‐H.</creatorcontrib><creatorcontrib>Thouret, V.</creatorcontrib><creatorcontrib>Marenco, A.</creatorcontrib><creatorcontrib>Asman, W. A. H.</creatorcontrib><creatorcontrib>Lawrence, M.</creatorcontrib><creatorcontrib>Crutzen, P. J.</creatorcontrib><creatorcontrib>Muller, J.‐F.</creatorcontrib><creatorcontrib>Hauglustaine, D. A.</creatorcontrib><creatorcontrib>Kanakidou, M.</creatorcontrib><title>Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data</title><title>Journal of Geophysical Research, Washington, DC</title><addtitle>J. Geophys. Res</addtitle><description>Ozone distributions from state‐of‐the‐art global three‐dimensional chemistry transport models are compared to O3 data collected on Airbus A340 passenger aircraft as part of the Measurement of Ozone and Water Vapor by Airbus In‐Service Aircraft (MOZAIC) project. The model results are compared to monthly averaged data at cruise altitudes in the upper troposphere and lower stratosphere and monthly averaged vertical profiles collected over particular cities during takeoff and landing. The models generally show good agreement with the data in regions which have previously been well documented and where the meteorology is well understood/captured by meteorological models (e.g., over Europe). However, in the upper troposphere and lower stratosphere, models often fail to capture sharp gradients across the tropopause and from the subtropics to the tropics. In some models, this is related to deficiencies in model transport schemes and upper boundary conditions. Also, regions of the globe where our understanding of meteorology is poorer and emissions are less well known (e.g., tropics, continental Africa, Asia, and South America) are not simulated as well by all models. At particular measurement locations, it is apparent that emission inventories used by some global models underestimate emissions in certain regions (e.g., over southern Asia) or have incorrect seasonal variations (e.g., biomass burning over South America). Deficiencies in chemical schemes may also explain differences between models and the data.</description><subject>Chemical composition and interactions. Ionic interactions and processes</subject><subject>Continental interfaces, environment</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Ocean, Atmosphere</subject><subject>Sciences of the Universe</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEEqO2Ox7AC4SoRMC3JPZylMLMVFNG4tJKbKwTzwkNeOLBTtoOT8Ejk5CqsMIbS8ff_0k-f5I8Y_Q1o1y_YVrr8zNNqSzko2TGWZannFP-OJlRJlVKOS-eJicxfqPDkVkuKZslv0q_20Noom9Jhd0tYku-Ol-BI_Yad03swoF0Adq496EjO79FRwLG3nWRQLslFwixD7jDtiO-JpufvsU_D1fQYSCXMORIdSDzJlR9JKs2_YjhprE4TmyAuiMvLzZf5qvylGyhg-PkSQ0u4sn9fZR8fvf2U7lM15vFqpyvUytlLlPJNHKhsFDDZzJVSwAhMFcWCpUVVllmqc4sl1QiWqUrSStpZaZyypXWTBwlp5P3GpzZh2YH4WA8NGY5X5txRoXgUtDiZmRfTOw--B89xs4Mi7HoHLTo-2iYomowZwP4agJt8DEGrB_MjJqxJfNvSwP-_N4L0YKrhzXbJv7N8JwLoQeMT9ht4_DwX6U5X3w4K6ge3ekUGirEu4cQhO8mL0SRmav3C7PUJWd5qcyl-A33Xq1i</recordid><startdate>20000120</startdate><enddate>20000120</enddate><creator>Law, K. S.</creator><creator>Plantevin, P.‐H.</creator><creator>Thouret, V.</creator><creator>Marenco, A.</creator><creator>Asman, W. A. H.</creator><creator>Lawrence, M.</creator><creator>Crutzen, P. J.</creator><creator>Muller, J.‐F.</creator><creator>Hauglustaine, D. A.</creator><creator>Kanakidou, M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4479-903X</orcidid></search><sort><creationdate>20000120</creationdate><title>Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data</title><author>Law, K. S. ; Plantevin, P.‐H. ; Thouret, V. ; Marenco, A. ; Asman, W. A. H. ; Lawrence, M. ; Crutzen, P. J. ; Muller, J.‐F. ; Hauglustaine, D. A. ; Kanakidou, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4464-419e238e7800058f4aa33e68ca7857c8c1c095c2404eec89b40b4c45860289913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Chemical composition and interactions. Ionic interactions and processes</topic><topic>Continental interfaces, environment</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Ocean, Atmosphere</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Law, K. S.</creatorcontrib><creatorcontrib>Plantevin, P.‐H.</creatorcontrib><creatorcontrib>Thouret, V.</creatorcontrib><creatorcontrib>Marenco, A.</creatorcontrib><creatorcontrib>Asman, W. A. H.</creatorcontrib><creatorcontrib>Lawrence, M.</creatorcontrib><creatorcontrib>Crutzen, P. J.</creatorcontrib><creatorcontrib>Muller, J.‐F.</creatorcontrib><creatorcontrib>Hauglustaine, D. A.</creatorcontrib><creatorcontrib>Kanakidou, M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research, Washington, DC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Law, K. S.</au><au>Plantevin, P.‐H.</au><au>Thouret, V.</au><au>Marenco, A.</au><au>Asman, W. A. H.</au><au>Lawrence, M.</au><au>Crutzen, P. J.</au><au>Muller, J.‐F.</au><au>Hauglustaine, D. A.</au><au>Kanakidou, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data</atitle><jtitle>Journal of Geophysical Research, Washington, DC</jtitle><addtitle>J. Geophys. Res</addtitle><date>2000-01-20</date><risdate>2000</risdate><volume>105</volume><issue>D1</issue><spage>1503</spage><epage>1525</epage><pages>1503-1525</pages><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Ozone distributions from state‐of‐the‐art global three‐dimensional chemistry transport models are compared to O3 data collected on Airbus A340 passenger aircraft as part of the Measurement of Ozone and Water Vapor by Airbus In‐Service Aircraft (MOZAIC) project. The model results are compared to monthly averaged data at cruise altitudes in the upper troposphere and lower stratosphere and monthly averaged vertical profiles collected over particular cities during takeoff and landing. The models generally show good agreement with the data in regions which have previously been well documented and where the meteorology is well understood/captured by meteorological models (e.g., over Europe). However, in the upper troposphere and lower stratosphere, models often fail to capture sharp gradients across the tropopause and from the subtropics to the tropics. In some models, this is related to deficiencies in model transport schemes and upper boundary conditions. Also, regions of the globe where our understanding of meteorology is poorer and emissions are less well known (e.g., tropics, continental Africa, Asia, and South America) are not simulated as well by all models. At particular measurement locations, it is apparent that emission inventories used by some global models underestimate emissions in certain regions (e.g., over southern Asia) or have incorrect seasonal variations (e.g., biomass burning over South America). Deficiencies in chemical schemes may also explain differences between models and the data.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1999JD900474</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4479-903X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, Washington, DC, 2000-01, Vol.105 (D1), p.1503-1525
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_03324307v1
source Wiley-Blackwell Journals; Wiley-Blackwell AGU Digital Archive; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Chemical composition and interactions. Ionic interactions and processes
Continental interfaces, environment
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Ocean, Atmosphere
Sciences of the Universe
title Comparison between global chemistry transport model results and Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20global%20chemistry%20transport%20model%20results%20and%20Measurement%20of%20Ozone%20and%20Water%20Vapor%20by%20Airbus%20In-Service%20Aircraft%20(MOZAIC)%20data&rft.jtitle=Journal%20of%20Geophysical%20Research,%20Washington,%20DC&rft.au=Law,%20K.%20S.&rft.date=2000-01-20&rft.volume=105&rft.issue=D1&rft.spage=1503&rft.epage=1525&rft.pages=1503-1525&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/1999JD900474&rft_dat=%3Cproquest_hal_p%3E18085865%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18085865&rft_id=info:pmid/&rfr_iscdi=true