Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density

Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2021-08, Vol.22 (8), p.3431-3439
Hauptverfasser: Mariconti, Marina, Morel, Mathieu, Baigl, Damien, Rudiuk, Sergii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3439
container_issue 8
container_start_page 3431
container_title Biomacromolecules
container_volume 22
creator Mariconti, Marina
Morel, Mathieu
Baigl, Damien
Rudiuk, Sergii
description Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized. All tested enzymes (alkaline phosphatase (AP), horseradish peroxidase (HRP), and β-galactosidase (βGal)), incorporated individually or in a coupled manner (glucose oxidase (GOx)-HRP cascade), were shown to remain functional. The activities of AP and βGal were unchanged while that of HRP was slightly improved inside the nanogels. We demonstrate that, for HRP, it is not the DNA-to-enzyme ratio but the physical density of the functionalized DNA nanogels that is responsible for the improvement of its enzymatic activity.
doi_str_mv 10.1021/acs.biomac.1c00501
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03322480v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552060856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-4375c26ef38544ff8b855472851c1ee26d811f6b4c8eb91e63c21dff8978fc813</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwApxyhEOC_-McoxYoUlQ4lLPluE7rktglTovC05OQiiOnXe1-M9JMENxCEEOA4INUPi6Mq6WKoQKAAngWTCBFLCIMoPPfnUZJkiaXwZX3OwBAigmdBPmj_e5q2Rolq6oLM9Waow7nyyx6a1yrjQ2X0rqNrnz4ZdptuDpYWVQ6nDXO-yg39sPYTTjX1pu2uw4uSll5fXOa0-D96XE1W0T56_PLLMsjidOkjQhOqEJMl5hTQsqSF5xSkiBOoYJaI7bmEJasIIrrIoWaYYXguufShJeKQzwN7kffrazEvjG1bDrhpBGLLBfDDWCMEOHgOLB3I7tv3OdB-1bUxitdVdJqd_ACUYoAA5yyHkUjqoZwjS7_vCEQQ82ir1mMNYtTzb0oHkXDb-cOje2T_yf4AW3lgRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552060856</pqid></control><display><type>article</type><title>Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density</title><source>ACS Publications</source><creator>Mariconti, Marina ; Morel, Mathieu ; Baigl, Damien ; Rudiuk, Sergii</creator><creatorcontrib>Mariconti, Marina ; Morel, Mathieu ; Baigl, Damien ; Rudiuk, Sergii</creatorcontrib><description>Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized. All tested enzymes (alkaline phosphatase (AP), horseradish peroxidase (HRP), and β-galactosidase (βGal)), incorporated individually or in a coupled manner (glucose oxidase (GOx)-HRP cascade), were shown to remain functional. The activities of AP and βGal were unchanged while that of HRP was slightly improved inside the nanogels. We demonstrate that, for HRP, it is not the DNA-to-enzyme ratio but the physical density of the functionalized DNA nanogels that is responsible for the improvement of its enzymatic activity.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.1c00501</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Polymers</subject><ispartof>Biomacromolecules, 2021-08, Vol.22 (8), p.3431-3439</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-4375c26ef38544ff8b855472851c1ee26d811f6b4c8eb91e63c21dff8978fc813</citedby><cites>FETCH-LOGICAL-a397t-4375c26ef38544ff8b855472851c1ee26d811f6b4c8eb91e63c21dff8978fc813</cites><orcidid>0000-0003-1772-3080 ; 0000-0003-1728-1163 ; 0000-0002-6284-1708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.1c00501$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.1c00501$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03322480$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariconti, Marina</creatorcontrib><creatorcontrib>Morel, Mathieu</creatorcontrib><creatorcontrib>Baigl, Damien</creatorcontrib><creatorcontrib>Rudiuk, Sergii</creatorcontrib><title>Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized. All tested enzymes (alkaline phosphatase (AP), horseradish peroxidase (HRP), and β-galactosidase (βGal)), incorporated individually or in a coupled manner (glucose oxidase (GOx)-HRP cascade), were shown to remain functional. The activities of AP and βGal were unchanged while that of HRP was slightly improved inside the nanogels. We demonstrate that, for HRP, it is not the DNA-to-enzyme ratio but the physical density of the functionalized DNA nanogels that is responsible for the improvement of its enzymatic activity.</description><subject>Chemical Sciences</subject><subject>Polymers</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhCMEEqXwApxyhEOC_-McoxYoUlQ4lLPluE7rktglTovC05OQiiOnXe1-M9JMENxCEEOA4INUPi6Mq6WKoQKAAngWTCBFLCIMoPPfnUZJkiaXwZX3OwBAigmdBPmj_e5q2Rolq6oLM9Waow7nyyx6a1yrjQ2X0rqNrnz4ZdptuDpYWVQ6nDXO-yg39sPYTTjX1pu2uw4uSll5fXOa0-D96XE1W0T56_PLLMsjidOkjQhOqEJMl5hTQsqSF5xSkiBOoYJaI7bmEJasIIrrIoWaYYXguufShJeKQzwN7kffrazEvjG1bDrhpBGLLBfDDWCMEOHgOLB3I7tv3OdB-1bUxitdVdJqd_ACUYoAA5yyHkUjqoZwjS7_vCEQQ82ir1mMNYtTzb0oHkXDb-cOje2T_yf4AW3lgRM</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Mariconti, Marina</creator><creator>Morel, Mathieu</creator><creator>Baigl, Damien</creator><creator>Rudiuk, Sergii</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1772-3080</orcidid><orcidid>https://orcid.org/0000-0003-1728-1163</orcidid><orcidid>https://orcid.org/0000-0002-6284-1708</orcidid></search><sort><creationdate>20210809</creationdate><title>Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density</title><author>Mariconti, Marina ; Morel, Mathieu ; Baigl, Damien ; Rudiuk, Sergii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-4375c26ef38544ff8b855472851c1ee26d811f6b4c8eb91e63c21dff8978fc813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariconti, Marina</creatorcontrib><creatorcontrib>Morel, Mathieu</creatorcontrib><creatorcontrib>Baigl, Damien</creatorcontrib><creatorcontrib>Rudiuk, Sergii</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariconti, Marina</au><au>Morel, Mathieu</au><au>Baigl, Damien</au><au>Rudiuk, Sergii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2021-08-09</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>3431</spage><epage>3439</epage><pages>3431-3439</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized. All tested enzymes (alkaline phosphatase (AP), horseradish peroxidase (HRP), and β-galactosidase (βGal)), incorporated individually or in a coupled manner (glucose oxidase (GOx)-HRP cascade), were shown to remain functional. The activities of AP and βGal were unchanged while that of HRP was slightly improved inside the nanogels. We demonstrate that, for HRP, it is not the DNA-to-enzyme ratio but the physical density of the functionalized DNA nanogels that is responsible for the improvement of its enzymatic activity.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.biomac.1c00501</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1772-3080</orcidid><orcidid>https://orcid.org/0000-0003-1728-1163</orcidid><orcidid>https://orcid.org/0000-0002-6284-1708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2021-08, Vol.22 (8), p.3431-3439
issn 1525-7797
1526-4602
language eng
recordid cdi_hal_primary_oai_HAL_hal_03322480v1
source ACS Publications
subjects Chemical Sciences
Polymers
title Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatically%20Active%20DNA-Protein%20Nanogels%20with%20Tunable%20Cross-Linking%20Density&rft.jtitle=Biomacromolecules&rft.au=Mariconti,%20Marina&rft.date=2021-08-09&rft.volume=22&rft.issue=8&rft.spage=3431&rft.epage=3439&rft.pages=3431-3439&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.1c00501&rft_dat=%3Cproquest_hal_p%3E2552060856%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552060856&rft_id=info:pmid/&rfr_iscdi=true