Suppression of the Kapitza instability in confined falling liquid films
We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to th...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-02, Vol.860, p.608-639 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | |
container_start_page | 608 |
container_title | Journal of fluid mechanics |
container_volume | 860 |
creator | Lavalle, Gianluca Li, Yiqin Mergui, Sophie Grenier, Nicolas Dietze, Georg F. |
description | We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial instability attributed to Kapitza (Zh. Eksp. Teor. Fiz., vol. 18 (1), 1948, pp. 3–28). The stabilization occurs both when the gas is merely subject to an aerostatic pressure difference, i.e. when the pressure difference balances the weight of the gas column, and when it flows counter-currently. In the latter case, the degree of stabilization increases with the gas velocity. Our investigation is based on a numerical solution of the Orr–Sommerfeld temporal linear stability problem as well as stability experiments that clearly confirm the observed effect. We quantify the degree of stabilization by comparing the linear stability threshold with its passive-gas limit, and perform a parametric study, varying the relative confinement, the Reynolds number, the inclination angle and the Kapitza number. For example, we find a 30 % reduction of the cutoff wavenumber of the instability for a water film in contact with air, flowing through a channel inclined at
$3^{\circ }$
and of height 2.8 times the film thickness. We also identify the critical conditions for the full suppression of the instability in terms of the governing parameters. The stabilization is caused by the strong confinement of the gas, which produces perturbations of the adverse interfacial tangential shear stress that are shifted by half a wavelength with respect to the wavy film surface. This tends to reduce flow-rate variations within the film, thus attenuating the inertia-based driving mechanism of the Kapitza instability. |
doi_str_mv | 10.1017/jfm.2018.902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03322234v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_902</cupid><sourcerecordid>2174324340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9d23e62d9e2eb715d38a41ff87a4a97c4203136a980ccc96ca4cb81ae039320c3</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKs7H2DAleCMJ5dOJstStBUHXKjrkMlk2pS5NZkR6tOb0qIbV-fCd34OH0K3GBIMmD9uqyYhgLNEADlDE8xSEfOUzc7RBICQGGMCl-jK-y0ApiD4BC3fx753xnvbtVFXRcPGRK-qt8O3imzrB1XY2g770Ee6ayvbmjKqVF3bdh3VdjfaMNq68dfoIqy9uTnVKfp8fvpYrOL8bfmymOexppwNsSgJNSkphSGm4HhW0kwxXFUZV0wJrhkBimmqRAZaa5FqxXSRYWWACkpA0ym6P-ZuVC17Zxvl9rJTVq7muTzsgFJCCGVfOLB3R7Z33W40fpDbbnRteE8SzBkljDII1MOR0q7z3pnqNxaDPGiVQas8aJVBa8CTE66awtlybf5S_z34AZqceLo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174324340</pqid></control><display><type>article</type><title>Suppression of the Kapitza instability in confined falling liquid films</title><source>Cambridge University Press Journals Complete</source><creator>Lavalle, Gianluca ; Li, Yiqin ; Mergui, Sophie ; Grenier, Nicolas ; Dietze, Georg F.</creator><creatorcontrib>Lavalle, Gianluca ; Li, Yiqin ; Mergui, Sophie ; Grenier, Nicolas ; Dietze, Georg F.</creatorcontrib><description>We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial instability attributed to Kapitza (Zh. Eksp. Teor. Fiz., vol. 18 (1), 1948, pp. 3–28). The stabilization occurs both when the gas is merely subject to an aerostatic pressure difference, i.e. when the pressure difference balances the weight of the gas column, and when it flows counter-currently. In the latter case, the degree of stabilization increases with the gas velocity. Our investigation is based on a numerical solution of the Orr–Sommerfeld temporal linear stability problem as well as stability experiments that clearly confirm the observed effect. We quantify the degree of stabilization by comparing the linear stability threshold with its passive-gas limit, and perform a parametric study, varying the relative confinement, the Reynolds number, the inclination angle and the Kapitza number. For example, we find a 30 % reduction of the cutoff wavenumber of the instability for a water film in contact with air, flowing through a channel inclined at
$3^{\circ }$
and of height 2.8 times the film thickness. We also identify the critical conditions for the full suppression of the instability in terms of the governing parameters. The stabilization is caused by the strong confinement of the gas, which produces perturbations of the adverse interfacial tangential shear stress that are shifted by half a wavelength with respect to the wavy film surface. This tends to reduce flow-rate variations within the film, thus attenuating the inertia-based driving mechanism of the Kapitza instability.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.902</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamics ; Aerostatics ; Computational fluid dynamics ; Confinement ; Falling liquid films ; Film thickness ; Flow rates ; Fluid flow ; Fluid mechanics ; Gas flow ; Inclination angle ; Inertia ; Instability ; Interface stability ; Investigations ; JFM Papers ; Mechanics ; Parameters ; Physics ; Pressure ; Reynolds number ; Shear stress ; Stability ; Vapor phases ; Water film ; Wavelength ; Wavelengths ; Weight</subject><ispartof>Journal of fluid mechanics, 2019-02, Vol.860, p.608-639</ispartof><rights>2018 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9d23e62d9e2eb715d38a41ff87a4a97c4203136a980ccc96ca4cb81ae039320c3</citedby><cites>FETCH-LOGICAL-c374t-9d23e62d9e2eb715d38a41ff87a4a97c4203136a980ccc96ca4cb81ae039320c3</cites><orcidid>0000-0003-1495-5505 ; 0000-0002-9866-5216 ; 0000-0001-5436-7041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018009023/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03322234$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavalle, Gianluca</creatorcontrib><creatorcontrib>Li, Yiqin</creatorcontrib><creatorcontrib>Mergui, Sophie</creatorcontrib><creatorcontrib>Grenier, Nicolas</creatorcontrib><creatorcontrib>Dietze, Georg F.</creatorcontrib><title>Suppression of the Kapitza instability in confined falling liquid films</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial instability attributed to Kapitza (Zh. Eksp. Teor. Fiz., vol. 18 (1), 1948, pp. 3–28). The stabilization occurs both when the gas is merely subject to an aerostatic pressure difference, i.e. when the pressure difference balances the weight of the gas column, and when it flows counter-currently. In the latter case, the degree of stabilization increases with the gas velocity. Our investigation is based on a numerical solution of the Orr–Sommerfeld temporal linear stability problem as well as stability experiments that clearly confirm the observed effect. We quantify the degree of stabilization by comparing the linear stability threshold with its passive-gas limit, and perform a parametric study, varying the relative confinement, the Reynolds number, the inclination angle and the Kapitza number. For example, we find a 30 % reduction of the cutoff wavenumber of the instability for a water film in contact with air, flowing through a channel inclined at
$3^{\circ }$
and of height 2.8 times the film thickness. We also identify the critical conditions for the full suppression of the instability in terms of the governing parameters. The stabilization is caused by the strong confinement of the gas, which produces perturbations of the adverse interfacial tangential shear stress that are shifted by half a wavelength with respect to the wavy film surface. This tends to reduce flow-rate variations within the film, thus attenuating the inertia-based driving mechanism of the Kapitza instability.</description><subject>Aerodynamics</subject><subject>Aerostatics</subject><subject>Computational fluid dynamics</subject><subject>Confinement</subject><subject>Falling liquid films</subject><subject>Film thickness</subject><subject>Flow rates</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Gas flow</subject><subject>Inclination angle</subject><subject>Inertia</subject><subject>Instability</subject><subject>Interface stability</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Mechanics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Pressure</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Stability</subject><subject>Vapor phases</subject><subject>Water film</subject><subject>Wavelength</subject><subject>Wavelengths</subject><subject>Weight</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtKAzEUhoMoWKs7H2DAleCMJ5dOJstStBUHXKjrkMlk2pS5NZkR6tOb0qIbV-fCd34OH0K3GBIMmD9uqyYhgLNEADlDE8xSEfOUzc7RBICQGGMCl-jK-y0ApiD4BC3fx753xnvbtVFXRcPGRK-qt8O3imzrB1XY2g770Ee6ayvbmjKqVF3bdh3VdjfaMNq68dfoIqy9uTnVKfp8fvpYrOL8bfmymOexppwNsSgJNSkphSGm4HhW0kwxXFUZV0wJrhkBimmqRAZaa5FqxXSRYWWACkpA0ym6P-ZuVC17Zxvl9rJTVq7muTzsgFJCCGVfOLB3R7Z33W40fpDbbnRteE8SzBkljDII1MOR0q7z3pnqNxaDPGiVQas8aJVBa8CTE66awtlybf5S_z34AZqceLo</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>Lavalle, Gianluca</creator><creator>Li, Yiqin</creator><creator>Mergui, Sophie</creator><creator>Grenier, Nicolas</creator><creator>Dietze, Georg F.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1495-5505</orcidid><orcidid>https://orcid.org/0000-0002-9866-5216</orcidid><orcidid>https://orcid.org/0000-0001-5436-7041</orcidid></search><sort><creationdate>20190210</creationdate><title>Suppression of the Kapitza instability in confined falling liquid films</title><author>Lavalle, Gianluca ; Li, Yiqin ; Mergui, Sophie ; Grenier, Nicolas ; Dietze, Georg F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9d23e62d9e2eb715d38a41ff87a4a97c4203136a980ccc96ca4cb81ae039320c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Aerostatics</topic><topic>Computational fluid dynamics</topic><topic>Confinement</topic><topic>Falling liquid films</topic><topic>Film thickness</topic><topic>Flow rates</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Gas flow</topic><topic>Inclination angle</topic><topic>Inertia</topic><topic>Instability</topic><topic>Interface stability</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Mechanics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Pressure</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Stability</topic><topic>Vapor phases</topic><topic>Water film</topic><topic>Wavelength</topic><topic>Wavelengths</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavalle, Gianluca</creatorcontrib><creatorcontrib>Li, Yiqin</creatorcontrib><creatorcontrib>Mergui, Sophie</creatorcontrib><creatorcontrib>Grenier, Nicolas</creatorcontrib><creatorcontrib>Dietze, Georg F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavalle, Gianluca</au><au>Li, Yiqin</au><au>Mergui, Sophie</au><au>Grenier, Nicolas</au><au>Dietze, Georg F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of the Kapitza instability in confined falling liquid films</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>860</volume><spage>608</spage><epage>639</epage><pages>608-639</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We revisit the linear stability of a falling liquid film flowing through an inclined narrow channel in interaction with a gas phase. We focus on a particular region of parameter space, small inclination and very strong confinement, where we have found the gas to strongly stabilize the film, up to the point of fully suppressing the long-wave interfacial instability attributed to Kapitza (Zh. Eksp. Teor. Fiz., vol. 18 (1), 1948, pp. 3–28). The stabilization occurs both when the gas is merely subject to an aerostatic pressure difference, i.e. when the pressure difference balances the weight of the gas column, and when it flows counter-currently. In the latter case, the degree of stabilization increases with the gas velocity. Our investigation is based on a numerical solution of the Orr–Sommerfeld temporal linear stability problem as well as stability experiments that clearly confirm the observed effect. We quantify the degree of stabilization by comparing the linear stability threshold with its passive-gas limit, and perform a parametric study, varying the relative confinement, the Reynolds number, the inclination angle and the Kapitza number. For example, we find a 30 % reduction of the cutoff wavenumber of the instability for a water film in contact with air, flowing through a channel inclined at
$3^{\circ }$
and of height 2.8 times the film thickness. We also identify the critical conditions for the full suppression of the instability in terms of the governing parameters. The stabilization is caused by the strong confinement of the gas, which produces perturbations of the adverse interfacial tangential shear stress that are shifted by half a wavelength with respect to the wavy film surface. This tends to reduce flow-rate variations within the film, thus attenuating the inertia-based driving mechanism of the Kapitza instability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.902</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-1495-5505</orcidid><orcidid>https://orcid.org/0000-0002-9866-5216</orcidid><orcidid>https://orcid.org/0000-0001-5436-7041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-02, Vol.860, p.608-639 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03322234v1 |
source | Cambridge University Press Journals Complete |
subjects | Aerodynamics Aerostatics Computational fluid dynamics Confinement Falling liquid films Film thickness Flow rates Fluid flow Fluid mechanics Gas flow Inclination angle Inertia Instability Interface stability Investigations JFM Papers Mechanics Parameters Physics Pressure Reynolds number Shear stress Stability Vapor phases Water film Wavelength Wavelengths Weight |
title | Suppression of the Kapitza instability in confined falling liquid films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20the%20Kapitza%20instability%20in%20confined%20falling%20liquid%20films&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Lavalle,%20Gianluca&rft.date=2019-02-10&rft.volume=860&rft.spage=608&rft.epage=639&rft.pages=608-639&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.902&rft_dat=%3Cproquest_hal_p%3E2174324340%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174324340&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_902&rfr_iscdi=true |