Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector
Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector t...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience research 2001-08, Vol.65 (3), p.208-219 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | 3 |
container_start_page | 208 |
container_title | Journal of neuroscience research |
container_volume | 65 |
creator | Franceschini, Isabelle A. Feigenbaum-Lacombe, Valérie Casanova, Philippe Lopez-Lastra, Marcelo Darlix, Jean-Luc Dubois Dalcq, Monique |
description | Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jnr.1144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03322139v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18176996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</originalsourceid><addsrcrecordid>eNqF0U9v0zAYBnALgVgZSHwC5BNih2x-_Tc5TtO2MlWdNEA9Wo77hnmkSbGTbvv2uGo0Tgj5YMv6-ZHth5CPwE6BMX720MVTAClfkRmwyhRSSfOazJjQrJAM-BF5l9IDY6yqlHhLjrKtpFBqRlaXTRN8wG6gP7FDOkTXpQYjDR3d9GNC2uEYXUu3Ef0YUx8TfQzDPXW0zufSEPsueBoxL3ZhD3fohz6-J28a1yb8MM3H5MfV5feLebG4vf56cb4ovORMFjUXKGRTNlqUkkPD84AadGnA1WKtdYm1X9fIpCgV97xUhmtU3qxL4FJ7cUxODrn3rrXbGDYuPtveBTs_X9j9HhOCcxDVDrL9fLDb2P8eMQ12E5LHtnUd5qdaA0xX-Wv-C6EEo6tKZ_jlAH3sU4rYvFwBmN03Y3Mzdt9Mpp-mzLHe4PovnKrIoDiAx9Di8z-D7M3ybgqcfC4Bn168i7-sNsIou1pe27tvam6uVkt7I_4AEKSl2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18176996</pqid></control><display><type>article</type><title>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Franceschini, Isabelle A. ; Feigenbaum-Lacombe, Valérie ; Casanova, Philippe ; Lopez-Lastra, Marcelo ; Darlix, Jean-Luc ; Dubois Dalcq, Monique</creator><creatorcontrib>Franceschini, Isabelle A. ; Feigenbaum-Lacombe, Valérie ; Casanova, Philippe ; Lopez-Lastra, Marcelo ; Darlix, Jean-Luc ; Dubois Dalcq, Monique</creatorcontrib><description>Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.1144</identifier><identifier>PMID: 11494355</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Adenovirus ; Alkaline Phosphatase ; Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; Cell Differentiation ; Cell Lineage ; Cellular Biology ; Corpus Striatum - cytology ; Corpus Striatum - embryology ; Defective Viruses - genetics ; development ; Development Biology ; Drug Resistance ; Fibroblast Growth Factor 2 - pharmacology ; Fluorescent Antibody Technique ; Gene Expression ; Genes ; Genes, Reporter ; Genetic Vectors - genetics ; Gentamicins - pharmacology ; GPI-Linked Proteins ; Isoenzymes - biosynthesis ; Isoenzymes - genetics ; Kanamycin Kinase - genetics ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Moloney murine leukemia virus - genetics ; nervous system ; Neurobiology ; Neurons - cytology ; Neurons - metabolism ; Neurons and Cognition ; neurosphere ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Phenotype ; Recombinant Fusion Proteins - biosynthesis ; recombinant virus ; Reproductive Biology ; Reticuloendotheliosis virus - genetics ; Retrovirus ; Stem Cells - drug effects ; Stem Cells - metabolism ; Transfection ; Transgenes</subject><ispartof>Journal of neuroscience research, 2001-08, Vol.65 (3), p.208-219</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</citedby><cites>FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</cites><orcidid>0000-0001-6461-7294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.1144$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.1144$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11494355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03322139$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Franceschini, Isabelle A.</creatorcontrib><creatorcontrib>Feigenbaum-Lacombe, Valérie</creatorcontrib><creatorcontrib>Casanova, Philippe</creatorcontrib><creatorcontrib>Lopez-Lastra, Marcelo</creatorcontrib><creatorcontrib>Darlix, Jean-Luc</creatorcontrib><creatorcontrib>Dubois Dalcq, Monique</creatorcontrib><title>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.</description><subject>Adenovirus</subject><subject>Alkaline Phosphatase</subject><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cellular Biology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - embryology</subject><subject>Defective Viruses - genetics</subject><subject>development</subject><subject>Development Biology</subject><subject>Drug Resistance</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors - genetics</subject><subject>Gentamicins - pharmacology</subject><subject>GPI-Linked Proteins</subject><subject>Isoenzymes - biosynthesis</subject><subject>Isoenzymes - genetics</subject><subject>Kanamycin Kinase - genetics</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Moloney murine leukemia virus - genetics</subject><subject>nervous system</subject><subject>Neurobiology</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons and Cognition</subject><subject>neurosphere</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Phenotype</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>recombinant virus</subject><subject>Reproductive Biology</subject><subject>Reticuloendotheliosis virus - genetics</subject><subject>Retrovirus</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Transfection</subject><subject>Transgenes</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9v0zAYBnALgVgZSHwC5BNih2x-_Tc5TtO2MlWdNEA9Wo77hnmkSbGTbvv2uGo0Tgj5YMv6-ZHth5CPwE6BMX720MVTAClfkRmwyhRSSfOazJjQrJAM-BF5l9IDY6yqlHhLjrKtpFBqRlaXTRN8wG6gP7FDOkTXpQYjDR3d9GNC2uEYXUu3Ef0YUx8TfQzDPXW0zufSEPsueBoxL3ZhD3fohz6-J28a1yb8MM3H5MfV5feLebG4vf56cb4ovORMFjUXKGRTNlqUkkPD84AadGnA1WKtdYm1X9fIpCgV97xUhmtU3qxL4FJ7cUxODrn3rrXbGDYuPtveBTs_X9j9HhOCcxDVDrL9fLDb2P8eMQ12E5LHtnUd5qdaA0xX-Wv-C6EEo6tKZ_jlAH3sU4rYvFwBmN03Y3Mzdt9Mpp-mzLHe4PovnKrIoDiAx9Di8z-D7M3ybgqcfC4Bn168i7-sNsIou1pe27tvam6uVkt7I_4AEKSl2g</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Franceschini, Isabelle A.</creator><creator>Feigenbaum-Lacombe, Valérie</creator><creator>Casanova, Philippe</creator><creator>Lopez-Lastra, Marcelo</creator><creator>Darlix, Jean-Luc</creator><creator>Dubois Dalcq, Monique</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6461-7294</orcidid></search><sort><creationdate>20010801</creationdate><title>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</title><author>Franceschini, Isabelle A. ; Feigenbaum-Lacombe, Valérie ; Casanova, Philippe ; Lopez-Lastra, Marcelo ; Darlix, Jean-Luc ; Dubois Dalcq, Monique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenovirus</topic><topic>Alkaline Phosphatase</topic><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cellular Biology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - embryology</topic><topic>Defective Viruses - genetics</topic><topic>development</topic><topic>Development Biology</topic><topic>Drug Resistance</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors - genetics</topic><topic>Gentamicins - pharmacology</topic><topic>GPI-Linked Proteins</topic><topic>Isoenzymes - biosynthesis</topic><topic>Isoenzymes - genetics</topic><topic>Kanamycin Kinase - genetics</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Moloney murine leukemia virus - genetics</topic><topic>nervous system</topic><topic>Neurobiology</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons and Cognition</topic><topic>neurosphere</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Phenotype</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>recombinant virus</topic><topic>Reproductive Biology</topic><topic>Reticuloendotheliosis virus - genetics</topic><topic>Retrovirus</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Transfection</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franceschini, Isabelle A.</creatorcontrib><creatorcontrib>Feigenbaum-Lacombe, Valérie</creatorcontrib><creatorcontrib>Casanova, Philippe</creatorcontrib><creatorcontrib>Lopez-Lastra, Marcelo</creatorcontrib><creatorcontrib>Darlix, Jean-Luc</creatorcontrib><creatorcontrib>Dubois Dalcq, Monique</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franceschini, Isabelle A.</au><au>Feigenbaum-Lacombe, Valérie</au><au>Casanova, Philippe</au><au>Lopez-Lastra, Marcelo</au><au>Darlix, Jean-Luc</au><au>Dubois Dalcq, Monique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>65</volume><issue>3</issue><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>11494355</pmid><doi>10.1002/jnr.1144</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6461-7294</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-4012 |
ispartof | Journal of neuroscience research, 2001-08, Vol.65 (3), p.208-219 |
issn | 0360-4012 1097-4547 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03322139v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adenovirus Alkaline Phosphatase Animals Astrocytes - cytology Astrocytes - metabolism Cell Differentiation Cell Lineage Cellular Biology Corpus Striatum - cytology Corpus Striatum - embryology Defective Viruses - genetics development Development Biology Drug Resistance Fibroblast Growth Factor 2 - pharmacology Fluorescent Antibody Technique Gene Expression Genes Genes, Reporter Genetic Vectors - genetics Gentamicins - pharmacology GPI-Linked Proteins Isoenzymes - biosynthesis Isoenzymes - genetics Kanamycin Kinase - genetics Life Sciences Mice Mice, Inbred C57BL Moloney murine leukemia virus - genetics nervous system Neurobiology Neurons - cytology Neurons - metabolism Neurons and Cognition neurosphere Oligodendroglia - cytology Oligodendroglia - metabolism Phenotype Recombinant Fusion Proteins - biosynthesis recombinant virus Reproductive Biology Reticuloendotheliosis virus - genetics Retrovirus Stem Cells - drug effects Stem Cells - metabolism Transfection Transgenes |
title | Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20gene%20transfer%20in%20mouse%20neural%20precursors%20with%20a%20bicistronic%20retroviral%20vector&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Franceschini,%20Isabelle%20A.&rft.date=2001-08-01&rft.volume=65&rft.issue=3&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.1144&rft_dat=%3Cproquest_hal_p%3E18176996%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18176996&rft_id=info:pmid/11494355&rfr_iscdi=true |