Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector

Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 2001-08, Vol.65 (3), p.208-219
Hauptverfasser: Franceschini, Isabelle A., Feigenbaum-Lacombe, Valérie, Casanova, Philippe, Lopez-Lastra, Marcelo, Darlix, Jean-Luc, Dubois Dalcq, Monique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 3
container_start_page 208
container_title Journal of neuroscience research
container_volume 65
creator Franceschini, Isabelle A.
Feigenbaum-Lacombe, Valérie
Casanova, Philippe
Lopez-Lastra, Marcelo
Darlix, Jean-Luc
Dubois Dalcq, Monique
description Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jnr.1144
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03322139v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18176996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</originalsourceid><addsrcrecordid>eNqF0U9v0zAYBnALgVgZSHwC5BNih2x-_Tc5TtO2MlWdNEA9Wo77hnmkSbGTbvv2uGo0Tgj5YMv6-ZHth5CPwE6BMX720MVTAClfkRmwyhRSSfOazJjQrJAM-BF5l9IDY6yqlHhLjrKtpFBqRlaXTRN8wG6gP7FDOkTXpQYjDR3d9GNC2uEYXUu3Ef0YUx8TfQzDPXW0zufSEPsueBoxL3ZhD3fohz6-J28a1yb8MM3H5MfV5feLebG4vf56cb4ovORMFjUXKGRTNlqUkkPD84AadGnA1WKtdYm1X9fIpCgV97xUhmtU3qxL4FJ7cUxODrn3rrXbGDYuPtveBTs_X9j9HhOCcxDVDrL9fLDb2P8eMQ12E5LHtnUd5qdaA0xX-Wv-C6EEo6tKZ_jlAH3sU4rYvFwBmN03Y3Mzdt9Mpp-mzLHe4PovnKrIoDiAx9Di8z-D7M3ybgqcfC4Bn168i7-sNsIou1pe27tvam6uVkt7I_4AEKSl2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18176996</pqid></control><display><type>article</type><title>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Franceschini, Isabelle A. ; Feigenbaum-Lacombe, Valérie ; Casanova, Philippe ; Lopez-Lastra, Marcelo ; Darlix, Jean-Luc ; Dubois Dalcq, Monique</creator><creatorcontrib>Franceschini, Isabelle A. ; Feigenbaum-Lacombe, Valérie ; Casanova, Philippe ; Lopez-Lastra, Marcelo ; Darlix, Jean-Luc ; Dubois Dalcq, Monique</creatorcontrib><description>Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 0360-4012</identifier><identifier>EISSN: 1097-4547</identifier><identifier>DOI: 10.1002/jnr.1144</identifier><identifier>PMID: 11494355</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Adenovirus ; Alkaline Phosphatase ; Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; Cell Differentiation ; Cell Lineage ; Cellular Biology ; Corpus Striatum - cytology ; Corpus Striatum - embryology ; Defective Viruses - genetics ; development ; Development Biology ; Drug Resistance ; Fibroblast Growth Factor 2 - pharmacology ; Fluorescent Antibody Technique ; Gene Expression ; Genes ; Genes, Reporter ; Genetic Vectors - genetics ; Gentamicins - pharmacology ; GPI-Linked Proteins ; Isoenzymes - biosynthesis ; Isoenzymes - genetics ; Kanamycin Kinase - genetics ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Moloney murine leukemia virus - genetics ; nervous system ; Neurobiology ; Neurons - cytology ; Neurons - metabolism ; Neurons and Cognition ; neurosphere ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Phenotype ; Recombinant Fusion Proteins - biosynthesis ; recombinant virus ; Reproductive Biology ; Reticuloendotheliosis virus - genetics ; Retrovirus ; Stem Cells - drug effects ; Stem Cells - metabolism ; Transfection ; Transgenes</subject><ispartof>Journal of neuroscience research, 2001-08, Vol.65 (3), p.208-219</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</citedby><cites>FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</cites><orcidid>0000-0001-6461-7294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnr.1144$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnr.1144$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11494355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03322139$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Franceschini, Isabelle A.</creatorcontrib><creatorcontrib>Feigenbaum-Lacombe, Valérie</creatorcontrib><creatorcontrib>Casanova, Philippe</creatorcontrib><creatorcontrib>Lopez-Lastra, Marcelo</creatorcontrib><creatorcontrib>Darlix, Jean-Luc</creatorcontrib><creatorcontrib>Dubois Dalcq, Monique</creatorcontrib><title>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</title><title>Journal of neuroscience research</title><addtitle>J. Neurosci. Res</addtitle><description>Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.</description><subject>Adenovirus</subject><subject>Alkaline Phosphatase</subject><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Cellular Biology</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - embryology</subject><subject>Defective Viruses - genetics</subject><subject>development</subject><subject>Development Biology</subject><subject>Drug Resistance</subject><subject>Fibroblast Growth Factor 2 - pharmacology</subject><subject>Fluorescent Antibody Technique</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors - genetics</subject><subject>Gentamicins - pharmacology</subject><subject>GPI-Linked Proteins</subject><subject>Isoenzymes - biosynthesis</subject><subject>Isoenzymes - genetics</subject><subject>Kanamycin Kinase - genetics</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Moloney murine leukemia virus - genetics</subject><subject>nervous system</subject><subject>Neurobiology</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons and Cognition</subject><subject>neurosphere</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Phenotype</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>recombinant virus</subject><subject>Reproductive Biology</subject><subject>Reticuloendotheliosis virus - genetics</subject><subject>Retrovirus</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><subject>Transfection</subject><subject>Transgenes</subject><issn>0360-4012</issn><issn>1097-4547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9v0zAYBnALgVgZSHwC5BNih2x-_Tc5TtO2MlWdNEA9Wo77hnmkSbGTbvv2uGo0Tgj5YMv6-ZHth5CPwE6BMX720MVTAClfkRmwyhRSSfOazJjQrJAM-BF5l9IDY6yqlHhLjrKtpFBqRlaXTRN8wG6gP7FDOkTXpQYjDR3d9GNC2uEYXUu3Ef0YUx8TfQzDPXW0zufSEPsueBoxL3ZhD3fohz6-J28a1yb8MM3H5MfV5feLebG4vf56cb4ovORMFjUXKGRTNlqUkkPD84AadGnA1WKtdYm1X9fIpCgV97xUhmtU3qxL4FJ7cUxODrn3rrXbGDYuPtveBTs_X9j9HhOCcxDVDrL9fLDb2P8eMQ12E5LHtnUd5qdaA0xX-Wv-C6EEo6tKZ_jlAH3sU4rYvFwBmN03Y3Mzdt9Mpp-mzLHe4PovnKrIoDiAx9Di8z-D7M3ybgqcfC4Bn168i7-sNsIou1pe27tvam6uVkt7I_4AEKSl2g</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Franceschini, Isabelle A.</creator><creator>Feigenbaum-Lacombe, Valérie</creator><creator>Casanova, Philippe</creator><creator>Lopez-Lastra, Marcelo</creator><creator>Darlix, Jean-Luc</creator><creator>Dubois Dalcq, Monique</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6461-7294</orcidid></search><sort><creationdate>20010801</creationdate><title>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</title><author>Franceschini, Isabelle A. ; Feigenbaum-Lacombe, Valérie ; Casanova, Philippe ; Lopez-Lastra, Marcelo ; Darlix, Jean-Luc ; Dubois Dalcq, Monique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4204-b23e34f8f638421f2f2f1b16871ab3d668ebcdbe043852c285726e5c7d81246c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenovirus</topic><topic>Alkaline Phosphatase</topic><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Cellular Biology</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - embryology</topic><topic>Defective Viruses - genetics</topic><topic>development</topic><topic>Development Biology</topic><topic>Drug Resistance</topic><topic>Fibroblast Growth Factor 2 - pharmacology</topic><topic>Fluorescent Antibody Technique</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors - genetics</topic><topic>Gentamicins - pharmacology</topic><topic>GPI-Linked Proteins</topic><topic>Isoenzymes - biosynthesis</topic><topic>Isoenzymes - genetics</topic><topic>Kanamycin Kinase - genetics</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Moloney murine leukemia virus - genetics</topic><topic>nervous system</topic><topic>Neurobiology</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons and Cognition</topic><topic>neurosphere</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Phenotype</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>recombinant virus</topic><topic>Reproductive Biology</topic><topic>Reticuloendotheliosis virus - genetics</topic><topic>Retrovirus</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><topic>Transfection</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franceschini, Isabelle A.</creatorcontrib><creatorcontrib>Feigenbaum-Lacombe, Valérie</creatorcontrib><creatorcontrib>Casanova, Philippe</creatorcontrib><creatorcontrib>Lopez-Lastra, Marcelo</creatorcontrib><creatorcontrib>Darlix, Jean-Luc</creatorcontrib><creatorcontrib>Dubois Dalcq, Monique</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of neuroscience research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franceschini, Isabelle A.</au><au>Feigenbaum-Lacombe, Valérie</au><au>Casanova, Philippe</au><au>Lopez-Lastra, Marcelo</au><au>Darlix, Jean-Luc</au><au>Dubois Dalcq, Monique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector</atitle><jtitle>Journal of neuroscience research</jtitle><addtitle>J. Neurosci. Res</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>65</volume><issue>3</issue><spage>208</spage><epage>219</epage><pages>208-219</pages><issn>0360-4012</issn><eissn>1097-4547</eissn><abstract>Gene transfer into neural precursors is a powerful approach to study the function of specific gene products during nervous system development. Here we describe a retrovirus‐based methodology to transduce foreign genes into mouse neural precursors. We used a high‐titer bicistronic retroviral vector that encodes a marker gene, placental alkaline phosphatase (plap), and a selection gene, neomycin phosphotransferase II (neoR), under the translational control of two retroviral internal ribosome entry segments. Transduction efficiency even without selection was up to 95% for multipotential neurospheres derived from embryonic striata and grown with basic fibroblast growth factor 2. Expression of plap and neoR was sustained with time in culture and upon differentiation into neurons, astrocytes, and oligodendrocytes, as shown by double immunofluorescence labeling with cell type‐specific markers, Western blotting, and neomycin resistance. However, levels of plap were decreased in differentiated oligodendrocytes. Transduction with the same vector of neonatal oligodendrocyte precursors grown in oligospheres consistently resulted in a lower proportion of plap‐immunoreactive cells and enhanced cell death in the absence of neomycin. However, plap expression was maintained in some differentiated oligodendrocytes expressing galactocerebroside or myelin basic protein. In that neurospheres can be easily expanded in vitro and factors enabling their differentiation into the three main central nervous system cell types are being elucidated, this methodology could be used in the future to produce large number of transduced, differentiated neural cells. J. Neurosci. Res. 65:208–219, 2001. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11494355</pmid><doi>10.1002/jnr.1144</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6461-7294</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-4012
ispartof Journal of neuroscience research, 2001-08, Vol.65 (3), p.208-219
issn 0360-4012
1097-4547
language eng
recordid cdi_hal_primary_oai_HAL_hal_03322139v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adenovirus
Alkaline Phosphatase
Animals
Astrocytes - cytology
Astrocytes - metabolism
Cell Differentiation
Cell Lineage
Cellular Biology
Corpus Striatum - cytology
Corpus Striatum - embryology
Defective Viruses - genetics
development
Development Biology
Drug Resistance
Fibroblast Growth Factor 2 - pharmacology
Fluorescent Antibody Technique
Gene Expression
Genes
Genes, Reporter
Genetic Vectors - genetics
Gentamicins - pharmacology
GPI-Linked Proteins
Isoenzymes - biosynthesis
Isoenzymes - genetics
Kanamycin Kinase - genetics
Life Sciences
Mice
Mice, Inbred C57BL
Moloney murine leukemia virus - genetics
nervous system
Neurobiology
Neurons - cytology
Neurons - metabolism
Neurons and Cognition
neurosphere
Oligodendroglia - cytology
Oligodendroglia - metabolism
Phenotype
Recombinant Fusion Proteins - biosynthesis
recombinant virus
Reproductive Biology
Reticuloendotheliosis virus - genetics
Retrovirus
Stem Cells - drug effects
Stem Cells - metabolism
Transfection
Transgenes
title Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20gene%20transfer%20in%20mouse%20neural%20precursors%20with%20a%20bicistronic%20retroviral%20vector&rft.jtitle=Journal%20of%20neuroscience%20research&rft.au=Franceschini,%20Isabelle%20A.&rft.date=2001-08-01&rft.volume=65&rft.issue=3&rft.spage=208&rft.epage=219&rft.pages=208-219&rft.issn=0360-4012&rft.eissn=1097-4547&rft_id=info:doi/10.1002/jnr.1144&rft_dat=%3Cproquest_hal_p%3E18176996%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18176996&rft_id=info:pmid/11494355&rfr_iscdi=true