Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input
Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large opti...
Gespeichert in:
Veröffentlicht in: | Optics letters 2021-08, Vol.46 (16), p.4021 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 4021 |
container_title | Optics letters |
container_volume | 46 |
creator | González-Andrade, David Dinh, Thi Thuy Duong Guerber, Sylvain Vulliet, Nathalie Cremer, Sébastien Monfray, Stephane Cassan, Eric Marris-Morini, Delphine Boeuf, Frédéric Cheben, Pavel Vivien, Laurent Velasco, Aitor V. Alonso-Ramos, Carlos |
description | Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers. However, state-of-the-art SHFT spectrometers in near-infrared achieve large optical throughput only within a narrow operational bandwidth. Here we demonstrate for the first time, to the best of our knowledge, a broadband silicon nitride SHFT spectrometer with the largest light collecting multiaperture input (
320
×
410
µ
m
2
) ever implemented in an SHFT on-chip spectrometer. The device was fabricated using 248 nm deep-ultraviolet lithography, exhibiting over 13 dB of optical throughput improvement compared to a single-aperture device. The measured resolution varies between 29 and 49 pm within the 1260–1600 nm wavelength range. |
doi_str_mv | 10.1364/OL.438361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03320955v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569688123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-10ef5514f25c8c5562f3b577c26f754fee7d05ec2d9aa5b3b8c4fb45c9ba60663</originalsourceid><addsrcrecordid>eNpFkMFLwzAYxYMoOKcH_4OCJw-dSZMvbY5zOCcUdtGTh5CmCcvompqkiv-9HRO9fA8-Hj_eewjdErwglLOHbb1gtKKcnKEZASpyVgp2jmaYMJ4LEMUluopxjzHmJaUz9P4YvGob1bfZ2o_BmZCnoPpofThk0XVO-z7rXQquNVkcjE7BH0wyIftyaTed1uQqGJUdxi45NZiQxmAy1w9jukYXVnXR3PzqHL2tn15Xm7zePr-slnWuKYiUE2wsAGG2AF1pAF5Y2kBZ6oLbEpg1pmwxGF20QiloaFNpZhsGWjSKY87pHN2fuDvVySG4gwrf0isnN8taHn-Y0gILgE8yee9O3iH4j9HEJPdT7X6KJwvgglcVKeg_UQcfYzD2D0uwPO4st7U87Ux_AIQzcIo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569688123</pqid></control><display><type>article</type><title>Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input</title><source>Optica Publishing Group Journals</source><creator>González-Andrade, David ; Dinh, Thi Thuy Duong ; Guerber, Sylvain ; Vulliet, Nathalie ; Cremer, Sébastien ; Monfray, Stephane ; Cassan, Eric ; Marris-Morini, Delphine ; Boeuf, Frédéric ; Cheben, Pavel ; Vivien, Laurent ; Velasco, Aitor V. ; Alonso-Ramos, Carlos</creator><creatorcontrib>González-Andrade, David ; Dinh, Thi Thuy Duong ; Guerber, Sylvain ; Vulliet, Nathalie ; Cremer, Sébastien ; Monfray, Stephane ; Cassan, Eric ; Marris-Morini, Delphine ; Boeuf, Frédéric ; Cheben, Pavel ; Vivien, Laurent ; Velasco, Aitor V. ; Alonso-Ramos, Carlos</creatorcontrib><description>Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers. However, state-of-the-art SHFT spectrometers in near-infrared achieve large optical throughput only within a narrow operational bandwidth. Here we demonstrate for the first time, to the best of our knowledge, a broadband silicon nitride SHFT spectrometer with the largest light collecting multiaperture input (
320
×
410
µ
m
2
) ever implemented in an SHFT on-chip spectrometer. The device was fabricated using 248 nm deep-ultraviolet lithography, exhibiting over 13 dB of optical throughput improvement compared to a single-aperture device. The measured resolution varies between 29 and 49 pm within the 1260–1600 nm wavelength range.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.438361</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Biomonitoring ; Broadband ; Engineering Sciences ; Environmental monitoring ; Fourier transforms ; Infrared spectrometers ; Near infrared radiation ; Optics ; Photonic ; Remote monitoring ; Remote sensing ; Silicon nitride ; Spectral resolution</subject><ispartof>Optics letters, 2021-08, Vol.46 (16), p.4021</ispartof><rights>Copyright Optical Society of America Aug 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-10ef5514f25c8c5562f3b577c26f754fee7d05ec2d9aa5b3b8c4fb45c9ba60663</citedby><cites>FETCH-LOGICAL-c359t-10ef5514f25c8c5562f3b577c26f754fee7d05ec2d9aa5b3b8c4fb45c9ba60663</cites><orcidid>0000-0003-4232-9130 ; 0000-0003-4402-877X ; 0000-0003-2802-7689 ; 0000-0002-1324-5029 ; 0000-0002-2980-7225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03320955$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Andrade, David</creatorcontrib><creatorcontrib>Dinh, Thi Thuy Duong</creatorcontrib><creatorcontrib>Guerber, Sylvain</creatorcontrib><creatorcontrib>Vulliet, Nathalie</creatorcontrib><creatorcontrib>Cremer, Sébastien</creatorcontrib><creatorcontrib>Monfray, Stephane</creatorcontrib><creatorcontrib>Cassan, Eric</creatorcontrib><creatorcontrib>Marris-Morini, Delphine</creatorcontrib><creatorcontrib>Boeuf, Frédéric</creatorcontrib><creatorcontrib>Cheben, Pavel</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Velasco, Aitor V.</creatorcontrib><creatorcontrib>Alonso-Ramos, Carlos</creatorcontrib><title>Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input</title><title>Optics letters</title><description>Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers. However, state-of-the-art SHFT spectrometers in near-infrared achieve large optical throughput only within a narrow operational bandwidth. Here we demonstrate for the first time, to the best of our knowledge, a broadband silicon nitride SHFT spectrometer with the largest light collecting multiaperture input (
320
×
410
µ
m
2
) ever implemented in an SHFT on-chip spectrometer. The device was fabricated using 248 nm deep-ultraviolet lithography, exhibiting over 13 dB of optical throughput improvement compared to a single-aperture device. The measured resolution varies between 29 and 49 pm within the 1260–1600 nm wavelength range.</description><subject>Biomonitoring</subject><subject>Broadband</subject><subject>Engineering Sciences</subject><subject>Environmental monitoring</subject><subject>Fourier transforms</subject><subject>Infrared spectrometers</subject><subject>Near infrared radiation</subject><subject>Optics</subject><subject>Photonic</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Silicon nitride</subject><subject>Spectral resolution</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAYxYMoOKcH_4OCJw-dSZMvbY5zOCcUdtGTh5CmCcvompqkiv-9HRO9fA8-Hj_eewjdErwglLOHbb1gtKKcnKEZASpyVgp2jmaYMJ4LEMUluopxjzHmJaUz9P4YvGob1bfZ2o_BmZCnoPpofThk0XVO-z7rXQquNVkcjE7BH0wyIftyaTed1uQqGJUdxi45NZiQxmAy1w9jukYXVnXR3PzqHL2tn15Xm7zePr-slnWuKYiUE2wsAGG2AF1pAF5Y2kBZ6oLbEpg1pmwxGF20QiloaFNpZhsGWjSKY87pHN2fuDvVySG4gwrf0isnN8taHn-Y0gILgE8yee9O3iH4j9HEJPdT7X6KJwvgglcVKeg_UQcfYzD2D0uwPO4st7U87Ux_AIQzcIo</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>González-Andrade, David</creator><creator>Dinh, Thi Thuy Duong</creator><creator>Guerber, Sylvain</creator><creator>Vulliet, Nathalie</creator><creator>Cremer, Sébastien</creator><creator>Monfray, Stephane</creator><creator>Cassan, Eric</creator><creator>Marris-Morini, Delphine</creator><creator>Boeuf, Frédéric</creator><creator>Cheben, Pavel</creator><creator>Vivien, Laurent</creator><creator>Velasco, Aitor V.</creator><creator>Alonso-Ramos, Carlos</creator><general>Optical Society of America</general><general>Optical Society of America - OSA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4232-9130</orcidid><orcidid>https://orcid.org/0000-0003-4402-877X</orcidid><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0002-1324-5029</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid></search><sort><creationdate>20210815</creationdate><title>Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input</title><author>González-Andrade, David ; Dinh, Thi Thuy Duong ; Guerber, Sylvain ; Vulliet, Nathalie ; Cremer, Sébastien ; Monfray, Stephane ; Cassan, Eric ; Marris-Morini, Delphine ; Boeuf, Frédéric ; Cheben, Pavel ; Vivien, Laurent ; Velasco, Aitor V. ; Alonso-Ramos, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-10ef5514f25c8c5562f3b577c26f754fee7d05ec2d9aa5b3b8c4fb45c9ba60663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomonitoring</topic><topic>Broadband</topic><topic>Engineering Sciences</topic><topic>Environmental monitoring</topic><topic>Fourier transforms</topic><topic>Infrared spectrometers</topic><topic>Near infrared radiation</topic><topic>Optics</topic><topic>Photonic</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Silicon nitride</topic><topic>Spectral resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Andrade, David</creatorcontrib><creatorcontrib>Dinh, Thi Thuy Duong</creatorcontrib><creatorcontrib>Guerber, Sylvain</creatorcontrib><creatorcontrib>Vulliet, Nathalie</creatorcontrib><creatorcontrib>Cremer, Sébastien</creatorcontrib><creatorcontrib>Monfray, Stephane</creatorcontrib><creatorcontrib>Cassan, Eric</creatorcontrib><creatorcontrib>Marris-Morini, Delphine</creatorcontrib><creatorcontrib>Boeuf, Frédéric</creatorcontrib><creatorcontrib>Cheben, Pavel</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Velasco, Aitor V.</creatorcontrib><creatorcontrib>Alonso-Ramos, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Andrade, David</au><au>Dinh, Thi Thuy Duong</au><au>Guerber, Sylvain</au><au>Vulliet, Nathalie</au><au>Cremer, Sébastien</au><au>Monfray, Stephane</au><au>Cassan, Eric</au><au>Marris-Morini, Delphine</au><au>Boeuf, Frédéric</au><au>Cheben, Pavel</au><au>Vivien, Laurent</au><au>Velasco, Aitor V.</au><au>Alonso-Ramos, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input</atitle><jtitle>Optics letters</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>46</volume><issue>16</issue><spage>4021</spage><pages>4021-</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Integrated microspectrometers implemented in silicon photonic chips have gathered a great interest for diverse applications such as biological analysis, environmental monitoring, and remote sensing. These applications often demand high spectral resolution, broad operational bandwidth, and large optical throughput. Spatial heterodyne Fourier-transform (SHFT) spectrometers have been proposed to overcome the limited optical throughput of dispersive and speckle-based on-chip spectrometers. However, state-of-the-art SHFT spectrometers in near-infrared achieve large optical throughput only within a narrow operational bandwidth. Here we demonstrate for the first time, to the best of our knowledge, a broadband silicon nitride SHFT spectrometer with the largest light collecting multiaperture input (
320
×
410
µ
m
2
) ever implemented in an SHFT on-chip spectrometer. The device was fabricated using 248 nm deep-ultraviolet lithography, exhibiting over 13 dB of optical throughput improvement compared to a single-aperture device. The measured resolution varies between 29 and 49 pm within the 1260–1600 nm wavelength range.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.438361</doi><orcidid>https://orcid.org/0000-0003-4232-9130</orcidid><orcidid>https://orcid.org/0000-0003-4402-877X</orcidid><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0002-1324-5029</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2021-08, Vol.46 (16), p.4021 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03320955v1 |
source | Optica Publishing Group Journals |
subjects | Biomonitoring Broadband Engineering Sciences Environmental monitoring Fourier transforms Infrared spectrometers Near infrared radiation Optics Photonic Remote monitoring Remote sensing Silicon nitride Spectral resolution |
title | Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Fourier-transform%20silicon%20nitride%20spectrometer%20with%20wide-area%20multiaperture%20input&rft.jtitle=Optics%20letters&rft.au=Gonz%C3%A1lez-Andrade,%20David&rft.date=2021-08-15&rft.volume=46&rft.issue=16&rft.spage=4021&rft.pages=4021-&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.438361&rft_dat=%3Cproquest_hal_p%3E2569688123%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569688123&rft_id=info:pmid/&rfr_iscdi=true |