Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN
With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods using Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) have achieved promising performance for skele...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2020-11, Vol.414, p.90-100 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!