Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN

With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods using Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) have achieved promising performance for skele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2020-11, Vol.414, p.90-100
Hauptverfasser: Zhu, Aichun, Wu, Qianyu, Cui, Ran, Wang, Tian, Hang, Wenlong, Hua, Gang, Snoussi, Hichem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 90
container_title Neurocomputing (Amsterdam)
container_volume 414
creator Zhu, Aichun
Wu, Qianyu
Cui, Ran
Wang, Tian
Hang, Wenlong
Hua, Gang
Snoussi, Hichem
description With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods using Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) have achieved promising performance for skeleton-based action recognition. However, these approaches are limited in the ability to explore the rich spatial–temporal relational information. In this paper, we propose a new spatial–temporal model with an end-to-end bidirectional LSTM-CNN (BiLSTM-CNN). First, a hierarchical spatial–temporal dependent relational model is used to explore rich spatial–temporal information in the skeleton data. Then a new framework is proposed to fuse CNN and LSTM. In this framework, the skeleton data are built by the dependent relational model and serve as the input of the proposed network. Then LSTM is used to extract the temporal features, and followed by a standard CNN to explore the spatial information from the output of LSTM. Finally, the experimental results demonstrate the effectiveness of the proposed model on the NTU RGB+D, SBU Interaction and UTD-MHAD dataset.
doi_str_mv 10.1016/j.neucom.2020.07.068
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03320682v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231220311760</els_id><sourcerecordid>oai_HAL_hal_03320682v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-2fa57fa794ef209486726fdf279e754dce97ccbdc40f116343b9c1e7025ec0673</originalsourceid><addsrcrecordid>eNp9kL1O7DAQhS0EEsvPG1C4pUju2MnGSYOEVvxJCxRAbTn2GLxk48gOCBp03-G-4X0SvARRUs3ozPlGOoeQIwY5A1b9WeU9vmi_zjlwyEHkUNVbZMZqwbOa19U2mUHD5xkvGN8lezGuAJhgvJmRj7O3ofPB9Y9U0eD0E42DGp3q_v_9N-J68EF11OCAvcF-pAG7dPV9EtfeYEetDzQ-Y4ej77NWRTRU6Y0jWbV_7N3X3r7T1hmXpG94eXd_nS1ubg7IjlVdxMPvuU8ezs_uF5fZ8vbianG6zHRRwphxq-bCKtGUaDk0ZV0JXlljuWhQzEujsRFat0aXYBmrirJoG81QAJ-jhkoU--R4-vukOjkEt1bhXXrl5OXpUm40KAqeWuOvLHnLyauDjzGg_QEYyE3fciWnvuWmbwlCJjJhJxOGKcerwyCjdthrnHJL493vDz4BXNCOCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhu, Aichun ; Wu, Qianyu ; Cui, Ran ; Wang, Tian ; Hang, Wenlong ; Hua, Gang ; Snoussi, Hichem</creator><creatorcontrib>Zhu, Aichun ; Wu, Qianyu ; Cui, Ran ; Wang, Tian ; Hang, Wenlong ; Hua, Gang ; Snoussi, Hichem</creatorcontrib><description>With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods using Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) have achieved promising performance for skeleton-based action recognition. However, these approaches are limited in the ability to explore the rich spatial–temporal relational information. In this paper, we propose a new spatial–temporal model with an end-to-end bidirectional LSTM-CNN (BiLSTM-CNN). First, a hierarchical spatial–temporal dependent relational model is used to explore rich spatial–temporal information in the skeleton data. Then a new framework is proposed to fuse CNN and LSTM. In this framework, the skeleton data are built by the dependent relational model and serve as the input of the proposed network. Then LSTM is used to extract the temporal features, and followed by a standard CNN to explore the spatial information from the output of LSTM. Finally, the experimental results demonstrate the effectiveness of the proposed model on the NTU RGB+D, SBU Interaction and UTD-MHAD dataset.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2020.07.068</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Action recognition ; Dependent relational model ; Engineering Sciences ; Signal and Image processing ; Spatial–temporal information</subject><ispartof>Neurocomputing (Amsterdam), 2020-11, Vol.414, p.90-100</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-2fa57fa794ef209486726fdf279e754dce97ccbdc40f116343b9c1e7025ec0673</citedby><cites>FETCH-LOGICAL-c340t-2fa57fa794ef209486726fdf279e754dce97ccbdc40f116343b9c1e7025ec0673</cites><orcidid>0000-0002-6563-2135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2020.07.068$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-03320682$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Aichun</creatorcontrib><creatorcontrib>Wu, Qianyu</creatorcontrib><creatorcontrib>Cui, Ran</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Hang, Wenlong</creatorcontrib><creatorcontrib>Hua, Gang</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><title>Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN</title><title>Neurocomputing (Amsterdam)</title><description>With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods using Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) have achieved promising performance for skeleton-based action recognition. However, these approaches are limited in the ability to explore the rich spatial–temporal relational information. In this paper, we propose a new spatial–temporal model with an end-to-end bidirectional LSTM-CNN (BiLSTM-CNN). First, a hierarchical spatial–temporal dependent relational model is used to explore rich spatial–temporal information in the skeleton data. Then a new framework is proposed to fuse CNN and LSTM. In this framework, the skeleton data are built by the dependent relational model and serve as the input of the proposed network. Then LSTM is used to extract the temporal features, and followed by a standard CNN to explore the spatial information from the output of LSTM. Finally, the experimental results demonstrate the effectiveness of the proposed model on the NTU RGB+D, SBU Interaction and UTD-MHAD dataset.</description><subject>Action recognition</subject><subject>Dependent relational model</subject><subject>Engineering Sciences</subject><subject>Signal and Image processing</subject><subject>Spatial–temporal information</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1O7DAQhS0EEsvPG1C4pUju2MnGSYOEVvxJCxRAbTn2GLxk48gOCBp03-G-4X0SvARRUs3ozPlGOoeQIwY5A1b9WeU9vmi_zjlwyEHkUNVbZMZqwbOa19U2mUHD5xkvGN8lezGuAJhgvJmRj7O3ofPB9Y9U0eD0E42DGp3q_v_9N-J68EF11OCAvcF-pAG7dPV9EtfeYEetDzQ-Y4ej77NWRTRU6Y0jWbV_7N3X3r7T1hmXpG94eXd_nS1ubg7IjlVdxMPvuU8ezs_uF5fZ8vbianG6zHRRwphxq-bCKtGUaDk0ZV0JXlljuWhQzEujsRFat0aXYBmrirJoG81QAJ-jhkoU--R4-vukOjkEt1bhXXrl5OXpUm40KAqeWuOvLHnLyauDjzGg_QEYyE3fciWnvuWmbwlCJjJhJxOGKcerwyCjdthrnHJL493vDz4BXNCOCA</recordid><startdate>20201113</startdate><enddate>20201113</enddate><creator>Zhu, Aichun</creator><creator>Wu, Qianyu</creator><creator>Cui, Ran</creator><creator>Wang, Tian</creator><creator>Hang, Wenlong</creator><creator>Hua, Gang</creator><creator>Snoussi, Hichem</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></search><sort><creationdate>20201113</creationdate><title>Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN</title><author>Zhu, Aichun ; Wu, Qianyu ; Cui, Ran ; Wang, Tian ; Hang, Wenlong ; Hua, Gang ; Snoussi, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-2fa57fa794ef209486726fdf279e754dce97ccbdc40f116343b9c1e7025ec0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action recognition</topic><topic>Dependent relational model</topic><topic>Engineering Sciences</topic><topic>Signal and Image processing</topic><topic>Spatial–temporal information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Aichun</creatorcontrib><creatorcontrib>Wu, Qianyu</creatorcontrib><creatorcontrib>Cui, Ran</creatorcontrib><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Hang, Wenlong</creatorcontrib><creatorcontrib>Hua, Gang</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Aichun</au><au>Wu, Qianyu</au><au>Cui, Ran</au><au>Wang, Tian</au><au>Hang, Wenlong</au><au>Hua, Gang</au><au>Snoussi, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2020-11-13</date><risdate>2020</risdate><volume>414</volume><spage>90</spage><epage>100</epage><pages>90-100</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>With the fast development of effective and low-cost human skeleton capture systems, skeleton-based action recognition has attracted much attention recently. Most existing methods using Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) have achieved promising performance for skeleton-based action recognition. However, these approaches are limited in the ability to explore the rich spatial–temporal relational information. In this paper, we propose a new spatial–temporal model with an end-to-end bidirectional LSTM-CNN (BiLSTM-CNN). First, a hierarchical spatial–temporal dependent relational model is used to explore rich spatial–temporal information in the skeleton data. Then a new framework is proposed to fuse CNN and LSTM. In this framework, the skeleton data are built by the dependent relational model and serve as the input of the proposed network. Then LSTM is used to extract the temporal features, and followed by a standard CNN to explore the spatial information from the output of LSTM. Finally, the experimental results demonstrate the effectiveness of the proposed model on the NTU RGB+D, SBU Interaction and UTD-MHAD dataset.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2020.07.068</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2020-11, Vol.414, p.90-100
issn 0925-2312
1872-8286
language eng
recordid cdi_hal_primary_oai_HAL_hal_03320682v1
source Elsevier ScienceDirect Journals Complete
subjects Action recognition
Dependent relational model
Engineering Sciences
Signal and Image processing
Spatial–temporal information
title Exploring a rich spatial–temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20a%20rich%20spatial%E2%80%93temporal%20dependent%20relational%20model%20for%20skeleton-based%20action%20recognition%20by%20bidirectional%20LSTM-CNN&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Zhu,%20Aichun&rft.date=2020-11-13&rft.volume=414&rft.spage=90&rft.epage=100&rft.pages=90-100&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2020.07.068&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03320682v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0925231220311760&rfr_iscdi=true