Abnormal event detection based on analysis of movement information of video sequence

Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optik (Stuttgart) 2018-01, Vol.152, p.50-60
Hauptverfasser: Wang, Tian, Qiao, Meina, Deng, Yingjun, Zhou, Yi, Wang, Huan, Lyu, Qi, Snoussi, Hichem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue
container_start_page 50
container_title Optik (Stuttgart)
container_volume 152
creator Wang, Tian
Qiao, Meina
Deng, Yingjun
Zhou, Yi
Wang, Huan
Lyu, Qi
Snoussi, Hichem
description Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.
doi_str_mv 10.1016/j.ijleo.2017.07.064
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03320601v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402617308872</els_id><sourcerecordid>oai_HAL_hal_03320601v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Ai-9eug66bRJ9-BhWdQVFrys55AmU0xpG21qwX9vuisehYEZHu8beI-xWw4rDlzcNyvXtORXGXC5gjgiP2MLLniZckRxzhYACGkOmbhkVyE0ACAlyAU7bKreD51uE5qoHxNLI5nR-T6pdCCbxEP3uv0OLiS-Tjo_UTf7XF_P2NEZ9clZ8kmgzy_qDV2zi1q3gW5-95K9PT0etrt0__r8st3sU4Mox7QkMEVJVFTcrrEANFYKw3W2Rl3oHK2gXJelLLWssJY8k2RkYdZ5xtFUIHHJ7k5_33WrPgbX6eFbee3UbrNXswaIGQjgE49ePHnN4EMYqP4DOKi5RNWoY4lqLlFBHJFH6uFEUYwxORpUMG6OaN0Qe1LWu3_5H8jYe_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abnormal event detection based on analysis of movement information of video sequence</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Tian ; Qiao, Meina ; Deng, Yingjun ; Zhou, Yi ; Wang, Huan ; Lyu, Qi ; Snoussi, Hichem</creator><creatorcontrib>Wang, Tian ; Qiao, Meina ; Deng, Yingjun ; Zhou, Yi ; Wang, Huan ; Lyu, Qi ; Snoussi, Hichem</creatorcontrib><description>Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2017.07.064</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Abnormal event detection ; Engineering Sciences ; Hidden Markov model ; Optical flow ; Signal and Image processing</subject><ispartof>Optik (Stuttgart), 2018-01, Vol.152, p.50-60</ispartof><rights>2017 Elsevier GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</citedby><cites>FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</cites><orcidid>0000-0002-0818-3070 ; 0000-0002-6563-2135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030402617308872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-03320601$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Qiao, Meina</creatorcontrib><creatorcontrib>Deng, Yingjun</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Lyu, Qi</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><title>Abnormal event detection based on analysis of movement information of video sequence</title><title>Optik (Stuttgart)</title><description>Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.</description><subject>Abnormal event detection</subject><subject>Engineering Sciences</subject><subject>Hidden Markov model</subject><subject>Optical flow</subject><subject>Signal and Image processing</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Ai-9eug66bRJ9-BhWdQVFrys55AmU0xpG21qwX9vuisehYEZHu8beI-xWw4rDlzcNyvXtORXGXC5gjgiP2MLLniZckRxzhYACGkOmbhkVyE0ACAlyAU7bKreD51uE5qoHxNLI5nR-T6pdCCbxEP3uv0OLiS-Tjo_UTf7XF_P2NEZ9clZ8kmgzy_qDV2zi1q3gW5-95K9PT0etrt0__r8st3sU4Mox7QkMEVJVFTcrrEANFYKw3W2Rl3oHK2gXJelLLWssJY8k2RkYdZ5xtFUIHHJ7k5_33WrPgbX6eFbee3UbrNXswaIGQjgE49ePHnN4EMYqP4DOKi5RNWoY4lqLlFBHJFH6uFEUYwxORpUMG6OaN0Qe1LWu3_5H8jYe_I</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Wang, Tian</creator><creator>Qiao, Meina</creator><creator>Deng, Yingjun</creator><creator>Zhou, Yi</creator><creator>Wang, Huan</creator><creator>Lyu, Qi</creator><creator>Snoussi, Hichem</creator><general>Elsevier GmbH</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0818-3070</orcidid><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></search><sort><creationdate>201801</creationdate><title>Abnormal event detection based on analysis of movement information of video sequence</title><author>Wang, Tian ; Qiao, Meina ; Deng, Yingjun ; Zhou, Yi ; Wang, Huan ; Lyu, Qi ; Snoussi, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abnormal event detection</topic><topic>Engineering Sciences</topic><topic>Hidden Markov model</topic><topic>Optical flow</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Qiao, Meina</creatorcontrib><creatorcontrib>Deng, Yingjun</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Lyu, Qi</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tian</au><au>Qiao, Meina</au><au>Deng, Yingjun</au><au>Zhou, Yi</au><au>Wang, Huan</au><au>Lyu, Qi</au><au>Snoussi, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormal event detection based on analysis of movement information of video sequence</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2018-01</date><risdate>2018</risdate><volume>152</volume><spage>50</spage><epage>60</epage><pages>50-60</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2017.07.064</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0818-3070</orcidid><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0030-4026
ispartof Optik (Stuttgart), 2018-01, Vol.152, p.50-60
issn 0030-4026
1618-1336
language eng
recordid cdi_hal_primary_oai_HAL_hal_03320601v1
source Elsevier ScienceDirect Journals
subjects Abnormal event detection
Engineering Sciences
Hidden Markov model
Optical flow
Signal and Image processing
title Abnormal event detection based on analysis of movement information of video sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormal%20event%20detection%20based%20on%20analysis%20of%20movement%20information%20of%20video%20sequence&rft.jtitle=Optik%20(Stuttgart)&rft.au=Wang,%20Tian&rft.date=2018-01&rft.volume=152&rft.spage=50&rft.epage=60&rft.pages=50-60&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2017.07.064&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03320601v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0030402617308872&rfr_iscdi=true