Abnormal event detection based on analysis of movement information of video sequence
Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method....
Gespeichert in:
Veröffentlicht in: | Optik (Stuttgart) 2018-01, Vol.152, p.50-60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | |
container_start_page | 50 |
container_title | Optik (Stuttgart) |
container_volume | 152 |
creator | Wang, Tian Qiao, Meina Deng, Yingjun Zhou, Yi Wang, Huan Lyu, Qi Snoussi, Hichem |
description | Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets. |
doi_str_mv | 10.1016/j.ijleo.2017.07.064 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03320601v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030402617308872</els_id><sourcerecordid>oai_HAL_hal_03320601v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Ai-9eug66bRJ9-BhWdQVFrys55AmU0xpG21qwX9vuisehYEZHu8beI-xWw4rDlzcNyvXtORXGXC5gjgiP2MLLniZckRxzhYACGkOmbhkVyE0ACAlyAU7bKreD51uE5qoHxNLI5nR-T6pdCCbxEP3uv0OLiS-Tjo_UTf7XF_P2NEZ9clZ8kmgzy_qDV2zi1q3gW5-95K9PT0etrt0__r8st3sU4Mox7QkMEVJVFTcrrEANFYKw3W2Rl3oHK2gXJelLLWssJY8k2RkYdZ5xtFUIHHJ7k5_33WrPgbX6eFbee3UbrNXswaIGQjgE49ePHnN4EMYqP4DOKi5RNWoY4lqLlFBHJFH6uFEUYwxORpUMG6OaN0Qe1LWu3_5H8jYe_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Abnormal event detection based on analysis of movement information of video sequence</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Tian ; Qiao, Meina ; Deng, Yingjun ; Zhou, Yi ; Wang, Huan ; Lyu, Qi ; Snoussi, Hichem</creator><creatorcontrib>Wang, Tian ; Qiao, Meina ; Deng, Yingjun ; Zhou, Yi ; Wang, Huan ; Lyu, Qi ; Snoussi, Hichem</creatorcontrib><description>Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.</description><identifier>ISSN: 0030-4026</identifier><identifier>EISSN: 1618-1336</identifier><identifier>DOI: 10.1016/j.ijleo.2017.07.064</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Abnormal event detection ; Engineering Sciences ; Hidden Markov model ; Optical flow ; Signal and Image processing</subject><ispartof>Optik (Stuttgart), 2018-01, Vol.152, p.50-60</ispartof><rights>2017 Elsevier GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</citedby><cites>FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</cites><orcidid>0000-0002-0818-3070 ; 0000-0002-6563-2135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0030402617308872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-03320601$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Qiao, Meina</creatorcontrib><creatorcontrib>Deng, Yingjun</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Lyu, Qi</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><title>Abnormal event detection based on analysis of movement information of video sequence</title><title>Optik (Stuttgart)</title><description>Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.</description><subject>Abnormal event detection</subject><subject>Engineering Sciences</subject><subject>Hidden Markov model</subject><subject>Optical flow</subject><subject>Signal and Image processing</subject><issn>0030-4026</issn><issn>1618-1336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Ai-9eug66bRJ9-BhWdQVFrys55AmU0xpG21qwX9vuisehYEZHu8beI-xWw4rDlzcNyvXtORXGXC5gjgiP2MLLniZckRxzhYACGkOmbhkVyE0ACAlyAU7bKreD51uE5qoHxNLI5nR-T6pdCCbxEP3uv0OLiS-Tjo_UTf7XF_P2NEZ9clZ8kmgzy_qDV2zi1q3gW5-95K9PT0etrt0__r8st3sU4Mox7QkMEVJVFTcrrEANFYKw3W2Rl3oHK2gXJelLLWssJY8k2RkYdZ5xtFUIHHJ7k5_33WrPgbX6eFbee3UbrNXswaIGQjgE49ePHnN4EMYqP4DOKi5RNWoY4lqLlFBHJFH6uFEUYwxORpUMG6OaN0Qe1LWu3_5H8jYe_I</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Wang, Tian</creator><creator>Qiao, Meina</creator><creator>Deng, Yingjun</creator><creator>Zhou, Yi</creator><creator>Wang, Huan</creator><creator>Lyu, Qi</creator><creator>Snoussi, Hichem</creator><general>Elsevier GmbH</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0818-3070</orcidid><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></search><sort><creationdate>201801</creationdate><title>Abnormal event detection based on analysis of movement information of video sequence</title><author>Wang, Tian ; Qiao, Meina ; Deng, Yingjun ; Zhou, Yi ; Wang, Huan ; Lyu, Qi ; Snoussi, Hichem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8e0c58ee5b1d93503cd76c1a293a5a43d6e4a8878a7b3f7127ec75c94213cb073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abnormal event detection</topic><topic>Engineering Sciences</topic><topic>Hidden Markov model</topic><topic>Optical flow</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tian</creatorcontrib><creatorcontrib>Qiao, Meina</creatorcontrib><creatorcontrib>Deng, Yingjun</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Lyu, Qi</creatorcontrib><creatorcontrib>Snoussi, Hichem</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optik (Stuttgart)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tian</au><au>Qiao, Meina</au><au>Deng, Yingjun</au><au>Zhou, Yi</au><au>Wang, Huan</au><au>Lyu, Qi</au><au>Snoussi, Hichem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormal event detection based on analysis of movement information of video sequence</atitle><jtitle>Optik (Stuttgart)</jtitle><date>2018-01</date><risdate>2018</risdate><volume>152</volume><spage>50</spage><epage>60</epage><pages>50-60</pages><issn>0030-4026</issn><eissn>1618-1336</eissn><abstract>Abnormal event detection is a challenging problem in video surveillance which is essential to the early-warning security and protection system. We propose an algorithm to solve this problem efficiently based on an image descriptor which encodes the movement information and the classification method. The new abnormality indicator is derived from the hidden Markov model which learns the histograms of optical flow orientations of the observed video frames. This indicator measures the similarity between the observed video frame and existing normal frames. The proposed method is evaluated and validated on several video surveillance datasets.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.ijleo.2017.07.064</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0818-3070</orcidid><orcidid>https://orcid.org/0000-0002-6563-2135</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4026 |
ispartof | Optik (Stuttgart), 2018-01, Vol.152, p.50-60 |
issn | 0030-4026 1618-1336 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03320601v1 |
source | Elsevier ScienceDirect Journals |
subjects | Abnormal event detection Engineering Sciences Hidden Markov model Optical flow Signal and Image processing |
title | Abnormal event detection based on analysis of movement information of video sequence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormal%20event%20detection%20based%20on%20analysis%20of%20movement%20information%20of%20video%20sequence&rft.jtitle=Optik%20(Stuttgart)&rft.au=Wang,%20Tian&rft.date=2018-01&rft.volume=152&rft.spage=50&rft.epage=60&rft.pages=50-60&rft.issn=0030-4026&rft.eissn=1618-1336&rft_id=info:doi/10.1016/j.ijleo.2017.07.064&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03320601v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0030402617308872&rfr_iscdi=true |