Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe

Decadal Climate Predictions (DCP) have gained considerable attention for their potential utility in promoting optimised plans of adaptation to climate change and variability. Their effective applicability to a targeted problem is nevertheless conditional on a detailed evaluation of their ability to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2021-12, Vol.57 (11-12), p.3245-3263
Hauptverfasser: Sgubin, Giovanni, Swingedouw, Didier, Borchert, Leonard F., Menary, Matthew B., Noël, Thomas, Loukos, Harilaos, Mignot, Juliette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3263
container_issue 11-12
container_start_page 3245
container_title Climate dynamics
container_volume 57
creator Sgubin, Giovanni
Swingedouw, Didier
Borchert, Leonard F.
Menary, Matthew B.
Noël, Thomas
Loukos, Harilaos
Mignot, Juliette
description Decadal Climate Predictions (DCP) have gained considerable attention for their potential utility in promoting optimised plans of adaptation to climate change and variability. Their effective applicability to a targeted problem is nevertheless conditional on a detailed evaluation of their ability to simulate the near-term climate evolution under specific conditions. Here we explore the performance of the IPSL-CM5A-LR DCP system in predicting air temperature over Europe, by proposing a systematic assessessment of the prediction skill for different time windows (periods of the calendar time, forecast years and months/seasons). In this framework, we also compare raw and de-biased hindcasts, in which the temperature outputs have been corrected using a quantile matching method. The systematic analysis allows to discern certain conditions conferring larger predictability, which we find to be intermittent in time. The predictions appear more skilful around the 1960s and after the 1980s, in coincidence with large shifts of the Atlantic Multidecadal Variability, which are well reproduced in the hindcasts. Averages on longer forecast periods also generally imply better prediction skill, while the best predicted months appear to be mainly those between late spring and early autumn. Moreover, we find an overall added value due to initialisation, while de-biased predictions significantly outperform raw predictions only for a few specific time windows. Finally, we discuss the potential implications of the proposed systematic exploration of skill opportunities in DCPs for integrated applications in climate sensitive sectors.
doi_str_mv 10.1007/s00382-021-05863-0
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03318273v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679870403</galeid><sourcerecordid>A679870403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-ed1c137ec391d565a12c40e483b771efeb95f4466edb569a9bce310887d2883f3</originalsourceid><addsrcrecordid>eNp9kVFrHCEUhSW00O02f6BPQqHQh0l11NF5XELaBBYCTfMsrt7ZNZkdp-osyb-v20nS5qX4IB6-e7jHg9BHSs4oIfJrIoSpuiI1rYhQDavICVpQzoqkWv4GLUjLSCWFFO_Q-5TuCKG8kfUCuZvHlGFvsrfYDwdI2W_LIww4dDjd-77HYRxDzNPgs4dUIOzAGmd6PEZw3j7DxkdcnEaIJk8RcDhAxBdTDCN8QG870yc4fbqX6Pbbxc_zy2p9_f3qfLWurCA0V-CopUyCZS11ohGG1pYT4IptpKTQwaYVHedNA24jmta0GwuMEqWkq5ViHVuiL7PvzvR6jH5v4qMOxuvL1VofNcIYVbVkB1rYTzM7xvBrKrn1XZjiUNbTtVCcMsGL5xKdzdTW9KD90IUcjS3Hwd7bMEDni75qZKsk4cX-ZYWngcJkeMhbM6Wkr25-vGY__8PuwPR5l0I_HX80vQbrGbQxpBShewlHiT72r-f-delf_-m_JF0iNg-lAg9biH8D_mfqNxB5sXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584135488</pqid></control><display><type>article</type><title>Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe</title><source>Springer Nature - Complete Springer Journals</source><creator>Sgubin, Giovanni ; Swingedouw, Didier ; Borchert, Leonard F. ; Menary, Matthew B. ; Noël, Thomas ; Loukos, Harilaos ; Mignot, Juliette</creator><creatorcontrib>Sgubin, Giovanni ; Swingedouw, Didier ; Borchert, Leonard F. ; Menary, Matthew B. ; Noël, Thomas ; Loukos, Harilaos ; Mignot, Juliette</creatorcontrib><description>Decadal Climate Predictions (DCP) have gained considerable attention for their potential utility in promoting optimised plans of adaptation to climate change and variability. Their effective applicability to a targeted problem is nevertheless conditional on a detailed evaluation of their ability to simulate the near-term climate evolution under specific conditions. Here we explore the performance of the IPSL-CM5A-LR DCP system in predicting air temperature over Europe, by proposing a systematic assessessment of the prediction skill for different time windows (periods of the calendar time, forecast years and months/seasons). In this framework, we also compare raw and de-biased hindcasts, in which the temperature outputs have been corrected using a quantile matching method. The systematic analysis allows to discern certain conditions conferring larger predictability, which we find to be intermittent in time. The predictions appear more skilful around the 1960s and after the 1980s, in coincidence with large shifts of the Atlantic Multidecadal Variability, which are well reproduced in the hindcasts. Averages on longer forecast periods also generally imply better prediction skill, while the best predicted months appear to be mainly those between late spring and early autumn. Moreover, we find an overall added value due to initialisation, while de-biased predictions significantly outperform raw predictions only for a few specific time windows. Finally, we discuss the potential implications of the proposed systematic exploration of skill opportunities in DCPs for integrated applications in climate sensitive sectors.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05863-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air temperature ; Atmospheric temperature ; Climate adaptation ; Climate change ; Climate prediction ; Climatic changes ; Climatic evolution ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Environmental aspects ; Forecasts and trends ; Geophysics/Geodesy ; Oceanography ; Predictions ; Sciences of the Universe ; Variability ; Windows (intervals)</subject><ispartof>Climate dynamics, 2021-12, Vol.57 (11-12), p.3245-3263</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-ed1c137ec391d565a12c40e483b771efeb95f4466edb569a9bce310887d2883f3</citedby><cites>FETCH-LOGICAL-c501t-ed1c137ec391d565a12c40e483b771efeb95f4466edb569a9bce310887d2883f3</cites><orcidid>0000-0002-0190-0188 ; 0000-0002-0583-0850 ; 0000-0002-4894-898X ; 0000-0002-9627-2056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05863-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05863-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03318273$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sgubin, Giovanni</creatorcontrib><creatorcontrib>Swingedouw, Didier</creatorcontrib><creatorcontrib>Borchert, Leonard F.</creatorcontrib><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Noël, Thomas</creatorcontrib><creatorcontrib>Loukos, Harilaos</creatorcontrib><creatorcontrib>Mignot, Juliette</creatorcontrib><title>Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Decadal Climate Predictions (DCP) have gained considerable attention for their potential utility in promoting optimised plans of adaptation to climate change and variability. Their effective applicability to a targeted problem is nevertheless conditional on a detailed evaluation of their ability to simulate the near-term climate evolution under specific conditions. Here we explore the performance of the IPSL-CM5A-LR DCP system in predicting air temperature over Europe, by proposing a systematic assessessment of the prediction skill for different time windows (periods of the calendar time, forecast years and months/seasons). In this framework, we also compare raw and de-biased hindcasts, in which the temperature outputs have been corrected using a quantile matching method. The systematic analysis allows to discern certain conditions conferring larger predictability, which we find to be intermittent in time. The predictions appear more skilful around the 1960s and after the 1980s, in coincidence with large shifts of the Atlantic Multidecadal Variability, which are well reproduced in the hindcasts. Averages on longer forecast periods also generally imply better prediction skill, while the best predicted months appear to be mainly those between late spring and early autumn. Moreover, we find an overall added value due to initialisation, while de-biased predictions significantly outperform raw predictions only for a few specific time windows. Finally, we discuss the potential implications of the proposed systematic exploration of skill opportunities in DCPs for integrated applications in climate sensitive sectors.</description><subject>Air temperature</subject><subject>Atmospheric temperature</subject><subject>Climate adaptation</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Climatic changes</subject><subject>Climatic evolution</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental aspects</subject><subject>Forecasts and trends</subject><subject>Geophysics/Geodesy</subject><subject>Oceanography</subject><subject>Predictions</subject><subject>Sciences of the Universe</subject><subject>Variability</subject><subject>Windows (intervals)</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVFrHCEUhSW00O02f6BPQqHQh0l11NF5XELaBBYCTfMsrt7ZNZkdp-osyb-v20nS5qX4IB6-e7jHg9BHSs4oIfJrIoSpuiI1rYhQDavICVpQzoqkWv4GLUjLSCWFFO_Q-5TuCKG8kfUCuZvHlGFvsrfYDwdI2W_LIww4dDjd-77HYRxDzNPgs4dUIOzAGmd6PEZw3j7DxkdcnEaIJk8RcDhAxBdTDCN8QG870yc4fbqX6Pbbxc_zy2p9_f3qfLWurCA0V-CopUyCZS11ohGG1pYT4IptpKTQwaYVHedNA24jmta0GwuMEqWkq5ViHVuiL7PvzvR6jH5v4qMOxuvL1VofNcIYVbVkB1rYTzM7xvBrKrn1XZjiUNbTtVCcMsGL5xKdzdTW9KD90IUcjS3Hwd7bMEDni75qZKsk4cX-ZYWngcJkeMhbM6Wkr25-vGY__8PuwPR5l0I_HX80vQbrGbQxpBShewlHiT72r-f-delf_-m_JF0iNg-lAg9biH8D_mfqNxB5sXk</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Sgubin, Giovanni</creator><creator>Swingedouw, Didier</creator><creator>Borchert, Leonard F.</creator><creator>Menary, Matthew B.</creator><creator>Noël, Thomas</creator><creator>Loukos, Harilaos</creator><creator>Mignot, Juliette</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0190-0188</orcidid><orcidid>https://orcid.org/0000-0002-0583-0850</orcidid><orcidid>https://orcid.org/0000-0002-4894-898X</orcidid><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid></search><sort><creationdate>20211201</creationdate><title>Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe</title><author>Sgubin, Giovanni ; Swingedouw, Didier ; Borchert, Leonard F. ; Menary, Matthew B. ; Noël, Thomas ; Loukos, Harilaos ; Mignot, Juliette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-ed1c137ec391d565a12c40e483b771efeb95f4466edb569a9bce310887d2883f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Atmospheric temperature</topic><topic>Climate adaptation</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Climatic changes</topic><topic>Climatic evolution</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental aspects</topic><topic>Forecasts and trends</topic><topic>Geophysics/Geodesy</topic><topic>Oceanography</topic><topic>Predictions</topic><topic>Sciences of the Universe</topic><topic>Variability</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sgubin, Giovanni</creatorcontrib><creatorcontrib>Swingedouw, Didier</creatorcontrib><creatorcontrib>Borchert, Leonard F.</creatorcontrib><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Noël, Thomas</creatorcontrib><creatorcontrib>Loukos, Harilaos</creatorcontrib><creatorcontrib>Mignot, Juliette</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sgubin, Giovanni</au><au>Swingedouw, Didier</au><au>Borchert, Leonard F.</au><au>Menary, Matthew B.</au><au>Noël, Thomas</au><au>Loukos, Harilaos</au><au>Mignot, Juliette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>57</volume><issue>11-12</issue><spage>3245</spage><epage>3263</epage><pages>3245-3263</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Decadal Climate Predictions (DCP) have gained considerable attention for their potential utility in promoting optimised plans of adaptation to climate change and variability. Their effective applicability to a targeted problem is nevertheless conditional on a detailed evaluation of their ability to simulate the near-term climate evolution under specific conditions. Here we explore the performance of the IPSL-CM5A-LR DCP system in predicting air temperature over Europe, by proposing a systematic assessessment of the prediction skill for different time windows (periods of the calendar time, forecast years and months/seasons). In this framework, we also compare raw and de-biased hindcasts, in which the temperature outputs have been corrected using a quantile matching method. The systematic analysis allows to discern certain conditions conferring larger predictability, which we find to be intermittent in time. The predictions appear more skilful around the 1960s and after the 1980s, in coincidence with large shifts of the Atlantic Multidecadal Variability, which are well reproduced in the hindcasts. Averages on longer forecast periods also generally imply better prediction skill, while the best predicted months appear to be mainly those between late spring and early autumn. Moreover, we find an overall added value due to initialisation, while de-biased predictions significantly outperform raw predictions only for a few specific time windows. Finally, we discuss the potential implications of the proposed systematic exploration of skill opportunities in DCPs for integrated applications in climate sensitive sectors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05863-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0190-0188</orcidid><orcidid>https://orcid.org/0000-0002-0583-0850</orcidid><orcidid>https://orcid.org/0000-0002-4894-898X</orcidid><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2021-12, Vol.57 (11-12), p.3245-3263
issn 0930-7575
1432-0894
language eng
recordid cdi_hal_primary_oai_HAL_hal_03318273v1
source Springer Nature - Complete Springer Journals
subjects Air temperature
Atmospheric temperature
Climate adaptation
Climate change
Climate prediction
Climatic changes
Climatic evolution
Climatology
Earth and Environmental Science
Earth Sciences
Environmental aspects
Forecasts and trends
Geophysics/Geodesy
Oceanography
Predictions
Sciences of the Universe
Variability
Windows (intervals)
title Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20investigation%20of%20skill%20opportunities%20in%20decadal%20prediction%20of%20air%20temperature%20over%20Europe&rft.jtitle=Climate%20dynamics&rft.au=Sgubin,%20Giovanni&rft.date=2021-12-01&rft.volume=57&rft.issue=11-12&rft.spage=3245&rft.epage=3263&rft.pages=3245-3263&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05863-0&rft_dat=%3Cgale_hal_p%3EA679870403%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584135488&rft_id=info:pmid/&rft_galeid=A679870403&rfr_iscdi=true