The polynomial conjecture for restrictions of some nilpotent Lie groups representations

Let $G$ be a connected and simply connected nilpotent Lie group, $K$ an analytic subgroup of $G$ and $\pi$ an irreducible unitary representation of $G$ whose coadjoint orbit of $G$ is denoted by $\Omega(\pi)$. Let $\mathcal U(\mathfrak g)$ be the enveloping algebra of ${\mathfrak g}_{\mathbb C}$, $\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Lie theory 2019, Vol.29 (2), p.311-341
Hauptverfasser: Baklouti, Ali, Fujiwara, Hidenori, Ludwig, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue 2
container_start_page 311
container_title Journal of Lie theory
container_volume 29
creator Baklouti, Ali
Fujiwara, Hidenori
Ludwig, Jean
description Let $G$ be a connected and simply connected nilpotent Lie group, $K$ an analytic subgroup of $G$ and $\pi$ an irreducible unitary representation of $G$ whose coadjoint orbit of $G$ is denoted by $\Omega(\pi)$. Let $\mathcal U(\mathfrak g)$ be the enveloping algebra of ${\mathfrak g}_{\mathbb C}$, $\mathfrak g$ designating the Lie algebra of $G$. We consider the algebra $\left(\mathcal U(\mathfrak g)/\ker \pi\right)^K$ of the $K$-invariant elements of $\mathcal U(\mathfrak g)/\ker \pi$. It turns out that this algebra is commutative if and only if the restriction $\pi|_K$ of $\pi$ to $K$ has finite multiplicities (cf.\,A.\,Baklouti and H.\,Fujiwara, {\em Commutativit\'{e} des op\'{e}rateurs diff\'{e}rentiels sur l'espace des repr\'{e}sentations restreintes d'un groupe de Lie nilpotent}, J.\,Math.\,Pures\,Appl.\,83 (2004) 137--161). In this article we suppose this eventuality and we study the polynomial conjecture asserting that our algebra is isomorphic to the algebra $\mathbb C[\Omega(\pi)]^K$ of the $K$-invariant polynomial functions on $\Omega(\pi)$. We give a proof of the conjecture in the case where $\Omega(\pi)$ admits a normal polarization of $G$ and in the case where $K$ is abelian. This problem was partially tackled previously by A.\,Baklouti, H.\,Fujiwara, J.\,Ludwig, {\em Analysis of restrictions of unitary representations of a nilpotent Lie group}, Bull. Sci. Math. 129 (2005) 187--209.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03313491v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03313491v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h189t-201334fbc02f9d555f8dd4419af40afd69c978fb2982e54c32bfd1116c30dff73</originalsourceid><addsrcrecordid>eNotzD1rwzAUhWENLSRN8x-0djBIurJjjSG0TcHQJaGjkSXdWsG2jKQU8u_rfkwHXh7OHVkzJVVRKhAr8pDShTEBoq7W5OPUOzqH4TaF0euBmjBdnMnX6CiGSKNLOXqTfZgSDUhTGB2d_DCH7KZMG-_oZwzXOS1yXvAS9S9-JPeoh-S2_7sh55fn0-FYNO-vb4d9U_S8VrkQjANI7AwTqGxZllhbKyVXGiXTaCtl1K7GTqhauFIaEB1aznllgFnEHWzI099vr4d2jn7U8dYG7dvjvml_GgPgIBX_4vANxDNQWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The polynomial conjecture for restrictions of some nilpotent Lie groups representations</title><source>Heldermann Verlag</source><source>EMIS (European Mathematical Information Service) - All Publications</source><creator>Baklouti, Ali ; Fujiwara, Hidenori ; Ludwig, Jean</creator><creatorcontrib>Baklouti, Ali ; Fujiwara, Hidenori ; Ludwig, Jean</creatorcontrib><description>Let $G$ be a connected and simply connected nilpotent Lie group, $K$ an analytic subgroup of $G$ and $\pi$ an irreducible unitary representation of $G$ whose coadjoint orbit of $G$ is denoted by $\Omega(\pi)$. Let $\mathcal U(\mathfrak g)$ be the enveloping algebra of ${\mathfrak g}_{\mathbb C}$, $\mathfrak g$ designating the Lie algebra of $G$. We consider the algebra $\left(\mathcal U(\mathfrak g)/\ker \pi\right)^K$ of the $K$-invariant elements of $\mathcal U(\mathfrak g)/\ker \pi$. It turns out that this algebra is commutative if and only if the restriction $\pi|_K$ of $\pi$ to $K$ has finite multiplicities (cf.\,A.\,Baklouti and H.\,Fujiwara, {\em Commutativit\'{e} des op\'{e}rateurs diff\'{e}rentiels sur l'espace des repr\'{e}sentations restreintes d'un groupe de Lie nilpotent}, J.\,Math.\,Pures\,Appl.\,83 (2004) 137--161). In this article we suppose this eventuality and we study the polynomial conjecture asserting that our algebra is isomorphic to the algebra $\mathbb C[\Omega(\pi)]^K$ of the $K$-invariant polynomial functions on $\Omega(\pi)$. We give a proof of the conjecture in the case where $\Omega(\pi)$ admits a normal polarization of $G$ and in the case where $K$ is abelian. This problem was partially tackled previously by A.\,Baklouti, H.\,Fujiwara, J.\,Ludwig, {\em Analysis of restrictions of unitary representations of a nilpotent Lie group}, Bull. Sci. Math. 129 (2005) 187--209.</description><identifier>ISSN: 0949-5932</identifier><language>eng</language><publisher>Heldermann Verlag</publisher><subject>Mathematics</subject><ispartof>Journal of Lie theory, 2019, Vol.29 (2), p.311-341</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03313491$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baklouti, Ali</creatorcontrib><creatorcontrib>Fujiwara, Hidenori</creatorcontrib><creatorcontrib>Ludwig, Jean</creatorcontrib><title>The polynomial conjecture for restrictions of some nilpotent Lie groups representations</title><title>Journal of Lie theory</title><description>Let $G$ be a connected and simply connected nilpotent Lie group, $K$ an analytic subgroup of $G$ and $\pi$ an irreducible unitary representation of $G$ whose coadjoint orbit of $G$ is denoted by $\Omega(\pi)$. Let $\mathcal U(\mathfrak g)$ be the enveloping algebra of ${\mathfrak g}_{\mathbb C}$, $\mathfrak g$ designating the Lie algebra of $G$. We consider the algebra $\left(\mathcal U(\mathfrak g)/\ker \pi\right)^K$ of the $K$-invariant elements of $\mathcal U(\mathfrak g)/\ker \pi$. It turns out that this algebra is commutative if and only if the restriction $\pi|_K$ of $\pi$ to $K$ has finite multiplicities (cf.\,A.\,Baklouti and H.\,Fujiwara, {\em Commutativit\'{e} des op\'{e}rateurs diff\'{e}rentiels sur l'espace des repr\'{e}sentations restreintes d'un groupe de Lie nilpotent}, J.\,Math.\,Pures\,Appl.\,83 (2004) 137--161). In this article we suppose this eventuality and we study the polynomial conjecture asserting that our algebra is isomorphic to the algebra $\mathbb C[\Omega(\pi)]^K$ of the $K$-invariant polynomial functions on $\Omega(\pi)$. We give a proof of the conjecture in the case where $\Omega(\pi)$ admits a normal polarization of $G$ and in the case where $K$ is abelian. This problem was partially tackled previously by A.\,Baklouti, H.\,Fujiwara, J.\,Ludwig, {\em Analysis of restrictions of unitary representations of a nilpotent Lie group}, Bull. Sci. Math. 129 (2005) 187--209.</description><subject>Mathematics</subject><issn>0949-5932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotzD1rwzAUhWENLSRN8x-0djBIurJjjSG0TcHQJaGjkSXdWsG2jKQU8u_rfkwHXh7OHVkzJVVRKhAr8pDShTEBoq7W5OPUOzqH4TaF0euBmjBdnMnX6CiGSKNLOXqTfZgSDUhTGB2d_DCH7KZMG-_oZwzXOS1yXvAS9S9-JPeoh-S2_7sh55fn0-FYNO-vb4d9U_S8VrkQjANI7AwTqGxZllhbKyVXGiXTaCtl1K7GTqhauFIaEB1aznllgFnEHWzI099vr4d2jn7U8dYG7dvjvml_GgPgIBX_4vANxDNQWw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Baklouti, Ali</creator><creator>Fujiwara, Hidenori</creator><creator>Ludwig, Jean</creator><general>Heldermann Verlag</general><scope>1XC</scope></search><sort><creationdate>2019</creationdate><title>The polynomial conjecture for restrictions of some nilpotent Lie groups representations</title><author>Baklouti, Ali ; Fujiwara, Hidenori ; Ludwig, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h189t-201334fbc02f9d555f8dd4419af40afd69c978fb2982e54c32bfd1116c30dff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baklouti, Ali</creatorcontrib><creatorcontrib>Fujiwara, Hidenori</creatorcontrib><creatorcontrib>Ludwig, Jean</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Lie theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baklouti, Ali</au><au>Fujiwara, Hidenori</au><au>Ludwig, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The polynomial conjecture for restrictions of some nilpotent Lie groups representations</atitle><jtitle>Journal of Lie theory</jtitle><date>2019</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>311</spage><epage>341</epage><pages>311-341</pages><issn>0949-5932</issn><abstract>Let $G$ be a connected and simply connected nilpotent Lie group, $K$ an analytic subgroup of $G$ and $\pi$ an irreducible unitary representation of $G$ whose coadjoint orbit of $G$ is denoted by $\Omega(\pi)$. Let $\mathcal U(\mathfrak g)$ be the enveloping algebra of ${\mathfrak g}_{\mathbb C}$, $\mathfrak g$ designating the Lie algebra of $G$. We consider the algebra $\left(\mathcal U(\mathfrak g)/\ker \pi\right)^K$ of the $K$-invariant elements of $\mathcal U(\mathfrak g)/\ker \pi$. It turns out that this algebra is commutative if and only if the restriction $\pi|_K$ of $\pi$ to $K$ has finite multiplicities (cf.\,A.\,Baklouti and H.\,Fujiwara, {\em Commutativit\'{e} des op\'{e}rateurs diff\'{e}rentiels sur l'espace des repr\'{e}sentations restreintes d'un groupe de Lie nilpotent}, J.\,Math.\,Pures\,Appl.\,83 (2004) 137--161). In this article we suppose this eventuality and we study the polynomial conjecture asserting that our algebra is isomorphic to the algebra $\mathbb C[\Omega(\pi)]^K$ of the $K$-invariant polynomial functions on $\Omega(\pi)$. We give a proof of the conjecture in the case where $\Omega(\pi)$ admits a normal polarization of $G$ and in the case where $K$ is abelian. This problem was partially tackled previously by A.\,Baklouti, H.\,Fujiwara, J.\,Ludwig, {\em Analysis of restrictions of unitary representations of a nilpotent Lie group}, Bull. Sci. Math. 129 (2005) 187--209.</abstract><pub>Heldermann Verlag</pub><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-5932
ispartof Journal of Lie theory, 2019, Vol.29 (2), p.311-341
issn 0949-5932
language eng
recordid cdi_hal_primary_oai_HAL_hal_03313491v1
source Heldermann Verlag; EMIS (European Mathematical Information Service) - All Publications
subjects Mathematics
title The polynomial conjecture for restrictions of some nilpotent Lie groups representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20polynomial%20conjecture%20for%20restrictions%20of%20some%20nilpotent%20Lie%20groups%20representations&rft.jtitle=Journal%20of%20Lie%20theory&rft.au=Baklouti,%20Ali&rft.date=2019&rft.volume=29&rft.issue=2&rft.spage=311&rft.epage=341&rft.pages=311-341&rft.issn=0949-5932&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_03313491v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true