Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming

Through imaging and theoretical modelling, Kimura  et al.  discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in Caenorhabditis elegans zygotes. Cytoplasmic streaming refers to a collective movement of cytoplasm observed in man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2017-04, Vol.19 (4), p.399-406
Hauptverfasser: Kimura, Kenji, Mamane, Alexandre, Sasaki, Tohru, Sato, Kohta, Takagi, Jun, Niwayama, Ritsuya, Hufnagel, Lars, Shimamoto, Yuta, Joanny, Jean-François, Uchida, Seiichi, Kimura, Akatsuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 4
container_start_page 399
container_title Nature cell biology
container_volume 19
creator Kimura, Kenji
Mamane, Alexandre
Sasaki, Tohru
Sato, Kohta
Takagi, Jun
Niwayama, Ritsuya
Hufnagel, Lars
Shimamoto, Yuta
Joanny, Jean-François
Uchida, Seiichi
Kimura, Akatsuki
description Through imaging and theoretical modelling, Kimura  et al.  discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in Caenorhabditis elegans zygotes. Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types 1 , 2 , 3 , 4 , 5 , 6 , 7 . The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses 6 . Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.
doi_str_mv 10.1038/ncb3490
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03301398v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744190</galeid><sourcerecordid>A632744190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</originalsourceid><addsrcrecordid>eNpdkcluFDEQhlsIRDbEG6CWOBAOTbyNl-MoCiTSSEgBzpbtthtHbvfgJSJvj0czSVBOLlV9rvqr_q57D8EXCDC_iEZjIsCr7hgSRgdCmXi9i-lqYFigo-4k5zsAICGAve2OEEecQySOu9urOC7boPLszZBs8aaGOg-zHb0qduxbOi2l6hpsr4Kf4mxj6afl3qaYe_NQHj_3uSSrZh-ns-6NUyHbd4f3tPv19ern5fWw-f7t5nK9GUyTWAansbMaEWo5c3TkcDVqiAkCRhOkkAGMA0aYgVhjw4BxDiIuMBbCUY2cxafd533f3yrIbfKzSg9yUV5erzdylwMYA4gFv4eNPd-z27T8qTYXOftsbAgq2qVmCTljK0QpYg39-AK9W2qKbRMJBWSCEs7g8_BJBSt9NEss9m-ZVM1Z3vy4lWuKESMECtDYT3u2nTLnZN2TWgjkzj55sK-RHw6zq24WPHGPfj3vkVspTjb9J-5Fr3_y1aGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917964871</pqid></control><display><type>article</type><title>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kimura, Kenji ; Mamane, Alexandre ; Sasaki, Tohru ; Sato, Kohta ; Takagi, Jun ; Niwayama, Ritsuya ; Hufnagel, Lars ; Shimamoto, Yuta ; Joanny, Jean-François ; Uchida, Seiichi ; Kimura, Akatsuki</creator><creatorcontrib>Kimura, Kenji ; Mamane, Alexandre ; Sasaki, Tohru ; Sato, Kohta ; Takagi, Jun ; Niwayama, Ritsuya ; Hufnagel, Lars ; Shimamoto, Yuta ; Joanny, Jean-François ; Uchida, Seiichi ; Kimura, Akatsuki</creatorcontrib><description>Through imaging and theoretical modelling, Kimura  et al.  discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in Caenorhabditis elegans zygotes. Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types 1 , 2 , 3 , 4 , 5 , 6 , 7 . The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses 6 . Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3490</identifier><identifier>PMID: 28288129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 14/19 ; 631/80/128 ; 631/80/128/1653 ; 631/80/641/1633 ; 631/80/642/1463 ; 64/11 ; Animals ; Caenorhabditis elegans - metabolism ; Cancer Research ; Cell Biology ; Cortex ; Cytoplasm ; Cytoplasmic Granules - metabolism ; Cytoplasmic Streaming ; Developmental Biology ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Exocytosis ; Feedback ; Granular materials ; Green Fluorescent Proteins - metabolism ; Hydrodynamics ; Image processing ; letter ; Life Sciences ; Local flow ; Meiosis ; Microscopy, Confocal ; Microtubules ; Microtubules - metabolism ; Nematodes ; Physics ; Physiological aspects ; Polarity ; RNA Interference ; RNA-mediated interference ; Stem Cells ; Time-Lapse Imaging ; Xenopus laevis ; Zygote - metabolism ; Zygotes</subject><ispartof>Nature cell biology, 2017-04, Vol.19 (4), p.399-406</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</citedby><cites>FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</cites><orcidid>0000-0003-4227-4811 ; 0000-0001-6966-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb3490$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb3490$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28288129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03301398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, Kenji</creatorcontrib><creatorcontrib>Mamane, Alexandre</creatorcontrib><creatorcontrib>Sasaki, Tohru</creatorcontrib><creatorcontrib>Sato, Kohta</creatorcontrib><creatorcontrib>Takagi, Jun</creatorcontrib><creatorcontrib>Niwayama, Ritsuya</creatorcontrib><creatorcontrib>Hufnagel, Lars</creatorcontrib><creatorcontrib>Shimamoto, Yuta</creatorcontrib><creatorcontrib>Joanny, Jean-François</creatorcontrib><creatorcontrib>Uchida, Seiichi</creatorcontrib><creatorcontrib>Kimura, Akatsuki</creatorcontrib><title>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Through imaging and theoretical modelling, Kimura  et al.  discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in Caenorhabditis elegans zygotes. Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types 1 , 2 , 3 , 4 , 5 , 6 , 7 . The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses 6 . Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.</description><subject>13/89</subject><subject>14/19</subject><subject>631/80/128</subject><subject>631/80/128/1653</subject><subject>631/80/641/1633</subject><subject>631/80/642/1463</subject><subject>64/11</subject><subject>Animals</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cortex</subject><subject>Cytoplasm</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Cytoplasmic Streaming</subject><subject>Developmental Biology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Exocytosis</subject><subject>Feedback</subject><subject>Granular materials</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hydrodynamics</subject><subject>Image processing</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Local flow</subject><subject>Meiosis</subject><subject>Microscopy, Confocal</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Nematodes</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Polarity</subject><subject>RNA Interference</subject><subject>RNA-mediated interference</subject><subject>Stem Cells</subject><subject>Time-Lapse Imaging</subject><subject>Xenopus laevis</subject><subject>Zygote - metabolism</subject><subject>Zygotes</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkcluFDEQhlsIRDbEG6CWOBAOTbyNl-MoCiTSSEgBzpbtthtHbvfgJSJvj0czSVBOLlV9rvqr_q57D8EXCDC_iEZjIsCr7hgSRgdCmXi9i-lqYFigo-4k5zsAICGAve2OEEecQySOu9urOC7boPLszZBs8aaGOg-zHb0qduxbOi2l6hpsr4Kf4mxj6afl3qaYe_NQHj_3uSSrZh-ns-6NUyHbd4f3tPv19ern5fWw-f7t5nK9GUyTWAansbMaEWo5c3TkcDVqiAkCRhOkkAGMA0aYgVhjw4BxDiIuMBbCUY2cxafd533f3yrIbfKzSg9yUV5erzdylwMYA4gFv4eNPd-z27T8qTYXOftsbAgq2qVmCTljK0QpYg39-AK9W2qKbRMJBWSCEs7g8_BJBSt9NEss9m-ZVM1Z3vy4lWuKESMECtDYT3u2nTLnZN2TWgjkzj55sK-RHw6zq24WPHGPfj3vkVspTjb9J-5Fr3_y1aGE</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Kimura, Kenji</creator><creator>Mamane, Alexandre</creator><creator>Sasaki, Tohru</creator><creator>Sato, Kohta</creator><creator>Takagi, Jun</creator><creator>Niwayama, Ritsuya</creator><creator>Hufnagel, Lars</creator><creator>Shimamoto, Yuta</creator><creator>Joanny, Jean-François</creator><creator>Uchida, Seiichi</creator><creator>Kimura, Akatsuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4227-4811</orcidid><orcidid>https://orcid.org/0000-0001-6966-3222</orcidid></search><sort><creationdate>20170401</creationdate><title>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</title><author>Kimura, Kenji ; Mamane, Alexandre ; Sasaki, Tohru ; Sato, Kohta ; Takagi, Jun ; Niwayama, Ritsuya ; Hufnagel, Lars ; Shimamoto, Yuta ; Joanny, Jean-François ; Uchida, Seiichi ; Kimura, Akatsuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/89</topic><topic>14/19</topic><topic>631/80/128</topic><topic>631/80/128/1653</topic><topic>631/80/641/1633</topic><topic>631/80/642/1463</topic><topic>64/11</topic><topic>Animals</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cortex</topic><topic>Cytoplasm</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Cytoplasmic Streaming</topic><topic>Developmental Biology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Exocytosis</topic><topic>Feedback</topic><topic>Granular materials</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hydrodynamics</topic><topic>Image processing</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Local flow</topic><topic>Meiosis</topic><topic>Microscopy, Confocal</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Nematodes</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Polarity</topic><topic>RNA Interference</topic><topic>RNA-mediated interference</topic><topic>Stem Cells</topic><topic>Time-Lapse Imaging</topic><topic>Xenopus laevis</topic><topic>Zygote - metabolism</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Kenji</creatorcontrib><creatorcontrib>Mamane, Alexandre</creatorcontrib><creatorcontrib>Sasaki, Tohru</creatorcontrib><creatorcontrib>Sato, Kohta</creatorcontrib><creatorcontrib>Takagi, Jun</creatorcontrib><creatorcontrib>Niwayama, Ritsuya</creatorcontrib><creatorcontrib>Hufnagel, Lars</creatorcontrib><creatorcontrib>Shimamoto, Yuta</creatorcontrib><creatorcontrib>Joanny, Jean-François</creatorcontrib><creatorcontrib>Uchida, Seiichi</creatorcontrib><creatorcontrib>Kimura, Akatsuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Kenji</au><au>Mamane, Alexandre</au><au>Sasaki, Tohru</au><au>Sato, Kohta</au><au>Takagi, Jun</au><au>Niwayama, Ritsuya</au><au>Hufnagel, Lars</au><au>Shimamoto, Yuta</au><au>Joanny, Jean-François</au><au>Uchida, Seiichi</au><au>Kimura, Akatsuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>19</volume><issue>4</issue><spage>399</spage><epage>406</epage><pages>399-406</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Through imaging and theoretical modelling, Kimura  et al.  discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in Caenorhabditis elegans zygotes. Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types 1 , 2 , 3 , 4 , 5 , 6 , 7 . The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses 6 . Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28288129</pmid><doi>10.1038/ncb3490</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4227-4811</orcidid><orcidid>https://orcid.org/0000-0001-6966-3222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2017-04, Vol.19 (4), p.399-406
issn 1465-7392
1476-4679
language eng
recordid cdi_hal_primary_oai_HAL_hal_03301398v1
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/89
14/19
631/80/128
631/80/128/1653
631/80/641/1633
631/80/642/1463
64/11
Animals
Caenorhabditis elegans - metabolism
Cancer Research
Cell Biology
Cortex
Cytoplasm
Cytoplasmic Granules - metabolism
Cytoplasmic Streaming
Developmental Biology
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Exocytosis
Feedback
Granular materials
Green Fluorescent Proteins - metabolism
Hydrodynamics
Image processing
letter
Life Sciences
Local flow
Meiosis
Microscopy, Confocal
Microtubules
Microtubules - metabolism
Nematodes
Physics
Physiological aspects
Polarity
RNA Interference
RNA-mediated interference
Stem Cells
Time-Lapse Imaging
Xenopus laevis
Zygote - metabolism
Zygotes
title Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endoplasmic-reticulum-mediated%20microtubule%20alignment%20governs%20cytoplasmic%20streaming&rft.jtitle=Nature%20cell%20biology&rft.au=Kimura,%20Kenji&rft.date=2017-04-01&rft.volume=19&rft.issue=4&rft.spage=399&rft.epage=406&rft.pages=399-406&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3490&rft_dat=%3Cgale_hal_p%3EA632744190%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917964871&rft_id=info:pmid/28288129&rft_galeid=A632744190&rfr_iscdi=true