Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming
Through imaging and theoretical modelling, Kimura et al. discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in Caenorhabditis elegans zygotes. Cytoplasmic streaming refers to a collective movement of cytoplasm observed in man...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2017-04, Vol.19 (4), p.399-406 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 4 |
container_start_page | 399 |
container_title | Nature cell biology |
container_volume | 19 |
creator | Kimura, Kenji Mamane, Alexandre Sasaki, Tohru Sato, Kohta Takagi, Jun Niwayama, Ritsuya Hufnagel, Lars Shimamoto, Yuta Joanny, Jean-François Uchida, Seiichi Kimura, Akatsuki |
description | Through imaging and theoretical modelling, Kimura
et al.
discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in
Caenorhabditis elegans
zygotes.
Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types
1
,
2
,
3
,
4
,
5
,
6
,
7
. The mechanism of meiotic cytoplasmic streaming (MeiCS) in
Caenorhabditis elegans
zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses
6
. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of
C. elegans
zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses. |
doi_str_mv | 10.1038/ncb3490 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03301398v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744190</galeid><sourcerecordid>A632744190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</originalsourceid><addsrcrecordid>eNpdkcluFDEQhlsIRDbEG6CWOBAOTbyNl-MoCiTSSEgBzpbtthtHbvfgJSJvj0czSVBOLlV9rvqr_q57D8EXCDC_iEZjIsCr7hgSRgdCmXi9i-lqYFigo-4k5zsAICGAve2OEEecQySOu9urOC7boPLszZBs8aaGOg-zHb0qduxbOi2l6hpsr4Kf4mxj6afl3qaYe_NQHj_3uSSrZh-ns-6NUyHbd4f3tPv19ern5fWw-f7t5nK9GUyTWAansbMaEWo5c3TkcDVqiAkCRhOkkAGMA0aYgVhjw4BxDiIuMBbCUY2cxafd533f3yrIbfKzSg9yUV5erzdylwMYA4gFv4eNPd-z27T8qTYXOftsbAgq2qVmCTljK0QpYg39-AK9W2qKbRMJBWSCEs7g8_BJBSt9NEss9m-ZVM1Z3vy4lWuKESMECtDYT3u2nTLnZN2TWgjkzj55sK-RHw6zq24WPHGPfj3vkVspTjb9J-5Fr3_y1aGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917964871</pqid></control><display><type>article</type><title>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kimura, Kenji ; Mamane, Alexandre ; Sasaki, Tohru ; Sato, Kohta ; Takagi, Jun ; Niwayama, Ritsuya ; Hufnagel, Lars ; Shimamoto, Yuta ; Joanny, Jean-François ; Uchida, Seiichi ; Kimura, Akatsuki</creator><creatorcontrib>Kimura, Kenji ; Mamane, Alexandre ; Sasaki, Tohru ; Sato, Kohta ; Takagi, Jun ; Niwayama, Ritsuya ; Hufnagel, Lars ; Shimamoto, Yuta ; Joanny, Jean-François ; Uchida, Seiichi ; Kimura, Akatsuki</creatorcontrib><description>Through imaging and theoretical modelling, Kimura
et al.
discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in
Caenorhabditis elegans
zygotes.
Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types
1
,
2
,
3
,
4
,
5
,
6
,
7
. The mechanism of meiotic cytoplasmic streaming (MeiCS) in
Caenorhabditis elegans
zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses
6
. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of
C. elegans
zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3490</identifier><identifier>PMID: 28288129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/89 ; 14/19 ; 631/80/128 ; 631/80/128/1653 ; 631/80/641/1633 ; 631/80/642/1463 ; 64/11 ; Animals ; Caenorhabditis elegans - metabolism ; Cancer Research ; Cell Biology ; Cortex ; Cytoplasm ; Cytoplasmic Granules - metabolism ; Cytoplasmic Streaming ; Developmental Biology ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Exocytosis ; Feedback ; Granular materials ; Green Fluorescent Proteins - metabolism ; Hydrodynamics ; Image processing ; letter ; Life Sciences ; Local flow ; Meiosis ; Microscopy, Confocal ; Microtubules ; Microtubules - metabolism ; Nematodes ; Physics ; Physiological aspects ; Polarity ; RNA Interference ; RNA-mediated interference ; Stem Cells ; Time-Lapse Imaging ; Xenopus laevis ; Zygote - metabolism ; Zygotes</subject><ispartof>Nature cell biology, 2017-04, Vol.19 (4), p.399-406</ispartof><rights>Springer Nature Limited 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</citedby><cites>FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</cites><orcidid>0000-0003-4227-4811 ; 0000-0001-6966-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb3490$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb3490$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28288129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03301398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kimura, Kenji</creatorcontrib><creatorcontrib>Mamane, Alexandre</creatorcontrib><creatorcontrib>Sasaki, Tohru</creatorcontrib><creatorcontrib>Sato, Kohta</creatorcontrib><creatorcontrib>Takagi, Jun</creatorcontrib><creatorcontrib>Niwayama, Ritsuya</creatorcontrib><creatorcontrib>Hufnagel, Lars</creatorcontrib><creatorcontrib>Shimamoto, Yuta</creatorcontrib><creatorcontrib>Joanny, Jean-François</creatorcontrib><creatorcontrib>Uchida, Seiichi</creatorcontrib><creatorcontrib>Kimura, Akatsuki</creatorcontrib><title>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Through imaging and theoretical modelling, Kimura
et al.
discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in
Caenorhabditis elegans
zygotes.
Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types
1
,
2
,
3
,
4
,
5
,
6
,
7
. The mechanism of meiotic cytoplasmic streaming (MeiCS) in
Caenorhabditis elegans
zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses
6
. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of
C. elegans
zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.</description><subject>13/89</subject><subject>14/19</subject><subject>631/80/128</subject><subject>631/80/128/1653</subject><subject>631/80/641/1633</subject><subject>631/80/642/1463</subject><subject>64/11</subject><subject>Animals</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cortex</subject><subject>Cytoplasm</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Cytoplasmic Streaming</subject><subject>Developmental Biology</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Exocytosis</subject><subject>Feedback</subject><subject>Granular materials</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hydrodynamics</subject><subject>Image processing</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Local flow</subject><subject>Meiosis</subject><subject>Microscopy, Confocal</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Nematodes</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Polarity</subject><subject>RNA Interference</subject><subject>RNA-mediated interference</subject><subject>Stem Cells</subject><subject>Time-Lapse Imaging</subject><subject>Xenopus laevis</subject><subject>Zygote - metabolism</subject><subject>Zygotes</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkcluFDEQhlsIRDbEG6CWOBAOTbyNl-MoCiTSSEgBzpbtthtHbvfgJSJvj0czSVBOLlV9rvqr_q57D8EXCDC_iEZjIsCr7hgSRgdCmXi9i-lqYFigo-4k5zsAICGAve2OEEecQySOu9urOC7boPLszZBs8aaGOg-zHb0qduxbOi2l6hpsr4Kf4mxj6afl3qaYe_NQHj_3uSSrZh-ns-6NUyHbd4f3tPv19ern5fWw-f7t5nK9GUyTWAansbMaEWo5c3TkcDVqiAkCRhOkkAGMA0aYgVhjw4BxDiIuMBbCUY2cxafd533f3yrIbfKzSg9yUV5erzdylwMYA4gFv4eNPd-z27T8qTYXOftsbAgq2qVmCTljK0QpYg39-AK9W2qKbRMJBWSCEs7g8_BJBSt9NEss9m-ZVM1Z3vy4lWuKESMECtDYT3u2nTLnZN2TWgjkzj55sK-RHw6zq24WPHGPfj3vkVspTjb9J-5Fr3_y1aGE</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Kimura, Kenji</creator><creator>Mamane, Alexandre</creator><creator>Sasaki, Tohru</creator><creator>Sato, Kohta</creator><creator>Takagi, Jun</creator><creator>Niwayama, Ritsuya</creator><creator>Hufnagel, Lars</creator><creator>Shimamoto, Yuta</creator><creator>Joanny, Jean-François</creator><creator>Uchida, Seiichi</creator><creator>Kimura, Akatsuki</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4227-4811</orcidid><orcidid>https://orcid.org/0000-0001-6966-3222</orcidid></search><sort><creationdate>20170401</creationdate><title>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</title><author>Kimura, Kenji ; Mamane, Alexandre ; Sasaki, Tohru ; Sato, Kohta ; Takagi, Jun ; Niwayama, Ritsuya ; Hufnagel, Lars ; Shimamoto, Yuta ; Joanny, Jean-François ; Uchida, Seiichi ; Kimura, Akatsuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-fb3feb246e87f6d815db13420cb42a2c0780747c13b3c70cff12893399f6b2fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/89</topic><topic>14/19</topic><topic>631/80/128</topic><topic>631/80/128/1653</topic><topic>631/80/641/1633</topic><topic>631/80/642/1463</topic><topic>64/11</topic><topic>Animals</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cortex</topic><topic>Cytoplasm</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Cytoplasmic Streaming</topic><topic>Developmental Biology</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Exocytosis</topic><topic>Feedback</topic><topic>Granular materials</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hydrodynamics</topic><topic>Image processing</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Local flow</topic><topic>Meiosis</topic><topic>Microscopy, Confocal</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Nematodes</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Polarity</topic><topic>RNA Interference</topic><topic>RNA-mediated interference</topic><topic>Stem Cells</topic><topic>Time-Lapse Imaging</topic><topic>Xenopus laevis</topic><topic>Zygote - metabolism</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Kenji</creatorcontrib><creatorcontrib>Mamane, Alexandre</creatorcontrib><creatorcontrib>Sasaki, Tohru</creatorcontrib><creatorcontrib>Sato, Kohta</creatorcontrib><creatorcontrib>Takagi, Jun</creatorcontrib><creatorcontrib>Niwayama, Ritsuya</creatorcontrib><creatorcontrib>Hufnagel, Lars</creatorcontrib><creatorcontrib>Shimamoto, Yuta</creatorcontrib><creatorcontrib>Joanny, Jean-François</creatorcontrib><creatorcontrib>Uchida, Seiichi</creatorcontrib><creatorcontrib>Kimura, Akatsuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Kenji</au><au>Mamane, Alexandre</au><au>Sasaki, Tohru</au><au>Sato, Kohta</au><au>Takagi, Jun</au><au>Niwayama, Ritsuya</au><au>Hufnagel, Lars</au><au>Shimamoto, Yuta</au><au>Joanny, Jean-François</au><au>Uchida, Seiichi</au><au>Kimura, Akatsuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>19</volume><issue>4</issue><spage>399</spage><epage>406</epage><pages>399-406</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Through imaging and theoretical modelling, Kimura
et al.
discover that endoplasmic reticulum flow determines microtubule alignment to promote cytoplasmic streaming of yolk granules in
Caenorhabditis elegans
zygotes.
Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types
1
,
2
,
3
,
4
,
5
,
6
,
7
. The mechanism of meiotic cytoplasmic streaming (MeiCS) in
Caenorhabditis elegans
zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses
6
. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of
C. elegans
zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28288129</pmid><doi>10.1038/ncb3490</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4227-4811</orcidid><orcidid>https://orcid.org/0000-0001-6966-3222</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2017-04, Vol.19 (4), p.399-406 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03301398v1 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13/89 14/19 631/80/128 631/80/128/1653 631/80/641/1633 631/80/642/1463 64/11 Animals Caenorhabditis elegans - metabolism Cancer Research Cell Biology Cortex Cytoplasm Cytoplasmic Granules - metabolism Cytoplasmic Streaming Developmental Biology Endoplasmic reticulum Endoplasmic Reticulum - metabolism Exocytosis Feedback Granular materials Green Fluorescent Proteins - metabolism Hydrodynamics Image processing letter Life Sciences Local flow Meiosis Microscopy, Confocal Microtubules Microtubules - metabolism Nematodes Physics Physiological aspects Polarity RNA Interference RNA-mediated interference Stem Cells Time-Lapse Imaging Xenopus laevis Zygote - metabolism Zygotes |
title | Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endoplasmic-reticulum-mediated%20microtubule%20alignment%20governs%20cytoplasmic%20streaming&rft.jtitle=Nature%20cell%20biology&rft.au=Kimura,%20Kenji&rft.date=2017-04-01&rft.volume=19&rft.issue=4&rft.spage=399&rft.epage=406&rft.pages=399-406&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3490&rft_dat=%3Cgale_hal_p%3EA632744190%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917964871&rft_id=info:pmid/28288129&rft_galeid=A632744190&rfr_iscdi=true |