Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow

We study the three-dimensional structure of turbulent velocity fields around extreme events of local energy transfer in the dissipative range. Velocity fields are measured by tomographic particle velocimetry at the centre of a von Kármán flow with resolution reaching the Kolmogorov scale. The charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-05, Vol.914, Article A9
Hauptverfasser: Debue, P., Valori, V., Cuvier, C., Daviaud, F., Foucaut, J.-M., Laval, J.-P., Wiertel, C., Padilla, V., Dubrulle, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 914
creator Debue, P.
Valori, V.
Cuvier, C.
Daviaud, F.
Foucaut, J.-M.
Laval, J.-P.
Wiertel, C.
Padilla, V.
Dubrulle, B.
description We study the three-dimensional structure of turbulent velocity fields around extreme events of local energy transfer in the dissipative range. Velocity fields are measured by tomographic particle velocimetry at the centre of a von Kármán flow with resolution reaching the Kolmogorov scale. The characterization is performed through both direct observation and an analysis of the velocity gradient tensor invariants at the extremes. The conditional average of local energy transfer on the second and third invariants seems to be the largest in the sheet zone, but the most extreme events of local energy transfer mostly correspond to the vortex stretching topology. The direct observation of the velocity fields allows for identification of three different structures: the screw and roll vortices, and the U-turn. They may correspond to a single structure seen at different times or in different frames of reference. The extreme events of local energy transfer come along with large velocity and vorticity norms, and the structure of the vorticity field around these events agrees with previous observations of numerical works at similar Reynolds numbers.
doi_str_mv 10.1017/jfm.2020.574
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03297759v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_574</cupid><sourcerecordid>2496959556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f842cbcc2f63edf04878df267d0f6d2e6d849b94add658a60869b6709db2377f3</originalsourceid><addsrcrecordid>eNptkEFPwyAYhonRxDm9-QNIPJnYCZRCOS6LOpMlXuaZ0AKOpSsV2un-vTRb9OKFj3x53ifwAnCL0QwjzB-3djcjiKBZwekZmGDKRMYZLc7BBCFCMowJugRXMW4RwjkSfALMehOMybTbmTY636oGqnQcoovQW9gFUw8h-hBh72Hr22zvYu2HCLWL0XWqTxno2hSC5rszYfT0SdIPoRqadIe28V_X4MKqJpqb05yC9-en9WKZrd5eXhfzVVZTSvvMlpTUVV0Ty3KjLaIlL7UljGtkmSaG6ZKKSlClNStKxVDJRMU4EroiOec2n4L7o3ejGtmlx6hwkF45uZyv5LhDORGcF2KPE3t3ZLvgPwcTe7n1Q0h_j5JQwUQhioIl6uFI1cHHGIz91WIkx9JlKl2OpctUesJnJ1ztquD0h_mz_hv4Ab_BhW8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496959556</pqid></control><display><type>article</type><title>Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow</title><source>Cambridge University Press Journals</source><creator>Debue, P. ; Valori, V. ; Cuvier, C. ; Daviaud, F. ; Foucaut, J.-M. ; Laval, J.-P. ; Wiertel, C. ; Padilla, V. ; Dubrulle, B.</creator><creatorcontrib>Debue, P. ; Valori, V. ; Cuvier, C. ; Daviaud, F. ; Foucaut, J.-M. ; Laval, J.-P. ; Wiertel, C. ; Padilla, V. ; Dubrulle, B.</creatorcontrib><description>We study the three-dimensional structure of turbulent velocity fields around extreme events of local energy transfer in the dissipative range. Velocity fields are measured by tomographic particle velocimetry at the centre of a von Kármán flow with resolution reaching the Kolmogorov scale. The characterization is performed through both direct observation and an analysis of the velocity gradient tensor invariants at the extremes. The conditional average of local energy transfer on the second and third invariants seems to be the largest in the sheet zone, but the most extreme events of local energy transfer mostly correspond to the vortex stretching topology. The direct observation of the velocity fields allows for identification of three different structures: the screw and roll vortices, and the U-turn. They may correspond to a single structure seen at different times or in different frames of reference. The extreme events of local energy transfer come along with large velocity and vorticity norms, and the structure of the vorticity field around these events agrees with previous observations of numerical works at similar Reynolds numbers.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.574</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Dimensional analysis ; Energy dissipation ; Energy transfer ; Fields ; Fluid flow ; Invariants ; JFM Papers ; Mathematical analysis ; Mechanics ; Norms ; Physics ; Reynolds number ; Tensors ; Three dimensional analysis ; Three dimensional flow ; Topology ; Turbulent flow ; Velocimetry ; Velocity ; Velocity distribution ; Velocity gradient ; Velocity gradients ; Viscosity ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2021-05, Vol.914, Article A9</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f842cbcc2f63edf04878df267d0f6d2e6d849b94add658a60869b6709db2377f3</citedby><cites>FETCH-LOGICAL-c444t-f842cbcc2f63edf04878df267d0f6d2e6d849b94add658a60869b6709db2377f3</cites><orcidid>0000-0001-6108-6942 ; 0000-0002-3644-723X ; 0000-0003-2267-8376 ; 0000-0003-0800-8608 ; 0000-0002-8010-295X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020005741/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03297759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Debue, P.</creatorcontrib><creatorcontrib>Valori, V.</creatorcontrib><creatorcontrib>Cuvier, C.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Foucaut, J.-M.</creatorcontrib><creatorcontrib>Laval, J.-P.</creatorcontrib><creatorcontrib>Wiertel, C.</creatorcontrib><creatorcontrib>Padilla, V.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><title>Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study the three-dimensional structure of turbulent velocity fields around extreme events of local energy transfer in the dissipative range. Velocity fields are measured by tomographic particle velocimetry at the centre of a von Kármán flow with resolution reaching the Kolmogorov scale. The characterization is performed through both direct observation and an analysis of the velocity gradient tensor invariants at the extremes. The conditional average of local energy transfer on the second and third invariants seems to be the largest in the sheet zone, but the most extreme events of local energy transfer mostly correspond to the vortex stretching topology. The direct observation of the velocity fields allows for identification of three different structures: the screw and roll vortices, and the U-turn. They may correspond to a single structure seen at different times or in different frames of reference. The extreme events of local energy transfer come along with large velocity and vorticity norms, and the structure of the vorticity field around these events agrees with previous observations of numerical works at similar Reynolds numbers.</description><subject>Computational fluid dynamics</subject><subject>Dimensional analysis</subject><subject>Energy dissipation</subject><subject>Energy transfer</subject><subject>Fields</subject><subject>Fluid flow</subject><subject>Invariants</subject><subject>JFM Papers</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Norms</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Tensors</subject><subject>Three dimensional analysis</subject><subject>Three dimensional flow</subject><subject>Topology</subject><subject>Turbulent flow</subject><subject>Velocimetry</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity gradient</subject><subject>Velocity gradients</subject><subject>Viscosity</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFPwyAYhonRxDm9-QNIPJnYCZRCOS6LOpMlXuaZ0AKOpSsV2un-vTRb9OKFj3x53ifwAnCL0QwjzB-3djcjiKBZwekZmGDKRMYZLc7BBCFCMowJugRXMW4RwjkSfALMehOMybTbmTY636oGqnQcoovQW9gFUw8h-hBh72Hr22zvYu2HCLWL0XWqTxno2hSC5rszYfT0SdIPoRqadIe28V_X4MKqJpqb05yC9-en9WKZrd5eXhfzVVZTSvvMlpTUVV0Ty3KjLaIlL7UljGtkmSaG6ZKKSlClNStKxVDJRMU4EroiOec2n4L7o3ejGtmlx6hwkF45uZyv5LhDORGcF2KPE3t3ZLvgPwcTe7n1Q0h_j5JQwUQhioIl6uFI1cHHGIz91WIkx9JlKl2OpctUesJnJ1ztquD0h_mz_hv4Ab_BhW8</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Debue, P.</creator><creator>Valori, V.</creator><creator>Cuvier, C.</creator><creator>Daviaud, F.</creator><creator>Foucaut, J.-M.</creator><creator>Laval, J.-P.</creator><creator>Wiertel, C.</creator><creator>Padilla, V.</creator><creator>Dubrulle, B.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6108-6942</orcidid><orcidid>https://orcid.org/0000-0002-3644-723X</orcidid><orcidid>https://orcid.org/0000-0003-2267-8376</orcidid><orcidid>https://orcid.org/0000-0003-0800-8608</orcidid><orcidid>https://orcid.org/0000-0002-8010-295X</orcidid></search><sort><creationdate>20210510</creationdate><title>Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow</title><author>Debue, P. ; Valori, V. ; Cuvier, C. ; Daviaud, F. ; Foucaut, J.-M. ; Laval, J.-P. ; Wiertel, C. ; Padilla, V. ; Dubrulle, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f842cbcc2f63edf04878df267d0f6d2e6d849b94add658a60869b6709db2377f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Dimensional analysis</topic><topic>Energy dissipation</topic><topic>Energy transfer</topic><topic>Fields</topic><topic>Fluid flow</topic><topic>Invariants</topic><topic>JFM Papers</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Norms</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Tensors</topic><topic>Three dimensional analysis</topic><topic>Three dimensional flow</topic><topic>Topology</topic><topic>Turbulent flow</topic><topic>Velocimetry</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity gradient</topic><topic>Velocity gradients</topic><topic>Viscosity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debue, P.</creatorcontrib><creatorcontrib>Valori, V.</creatorcontrib><creatorcontrib>Cuvier, C.</creatorcontrib><creatorcontrib>Daviaud, F.</creatorcontrib><creatorcontrib>Foucaut, J.-M.</creatorcontrib><creatorcontrib>Laval, J.-P.</creatorcontrib><creatorcontrib>Wiertel, C.</creatorcontrib><creatorcontrib>Padilla, V.</creatorcontrib><creatorcontrib>Dubrulle, B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debue, P.</au><au>Valori, V.</au><au>Cuvier, C.</au><au>Daviaud, F.</au><au>Foucaut, J.-M.</au><au>Laval, J.-P.</au><au>Wiertel, C.</au><au>Padilla, V.</au><au>Dubrulle, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-05-10</date><risdate>2021</risdate><volume>914</volume><artnum>A9</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the three-dimensional structure of turbulent velocity fields around extreme events of local energy transfer in the dissipative range. Velocity fields are measured by tomographic particle velocimetry at the centre of a von Kármán flow with resolution reaching the Kolmogorov scale. The characterization is performed through both direct observation and an analysis of the velocity gradient tensor invariants at the extremes. The conditional average of local energy transfer on the second and third invariants seems to be the largest in the sheet zone, but the most extreme events of local energy transfer mostly correspond to the vortex stretching topology. The direct observation of the velocity fields allows for identification of three different structures: the screw and roll vortices, and the U-turn. They may correspond to a single structure seen at different times or in different frames of reference. The extreme events of local energy transfer come along with large velocity and vorticity norms, and the structure of the vorticity field around these events agrees with previous observations of numerical works at similar Reynolds numbers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.574</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6108-6942</orcidid><orcidid>https://orcid.org/0000-0002-3644-723X</orcidid><orcidid>https://orcid.org/0000-0003-2267-8376</orcidid><orcidid>https://orcid.org/0000-0003-0800-8608</orcidid><orcidid>https://orcid.org/0000-0002-8010-295X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-05, Vol.914, Article A9
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_03297759v1
source Cambridge University Press Journals
subjects Computational fluid dynamics
Dimensional analysis
Energy dissipation
Energy transfer
Fields
Fluid flow
Invariants
JFM Papers
Mathematical analysis
Mechanics
Norms
Physics
Reynolds number
Tensors
Three dimensional analysis
Three dimensional flow
Topology
Turbulent flow
Velocimetry
Velocity
Velocity distribution
Velocity gradient
Velocity gradients
Viscosity
Vorticity
title Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20analysis%20of%20precursors%20to%20non-viscous%20dissipation%20in%20an%20experimental%20turbulent%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Debue,%20P.&rft.date=2021-05-10&rft.volume=914&rft.artnum=A9&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.574&rft_dat=%3Cproquest_hal_p%3E2496959556%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496959556&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_574&rfr_iscdi=true