A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative
•A novel preprocessing step, which is based on a predictive modeling using Multivariate linear regression is employed to reduce the inter-subject variability.•Only pixel intensities are used as features to train the classifiers.•The proposed aided diagnosis method is validated on a bigger multi-cent...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 2019-04, Vol.73, p.11-18 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Computerized medical imaging and graphics |
container_volume | 73 |
creator | Brahim, Abdelbasset Jennane, Rachid Riad, Rabia Janvier, Thomas Khedher, Laila Toumi, Hechmi Lespessailles, Eric |
description | •A novel preprocessing step, which is based on a predictive modeling using Multivariate linear regression is employed to reduce the inter-subject variability.•Only pixel intensities are used as features to train the classifiers.•The proposed aided diagnosis method is validated on a bigger multi-centric dataset.•Compared to state-of-the-art, our approach has a higher classification rate for OA detection.
This paper presents a fully developed computer aided diagnosis (CAD) system for early knee OsteoArthritis (OA) detection using knee X-ray imaging and machine learning algorithms. The X-ray images are first preprocessed in the Fourier domain using a circular Fourier filter. Then, a novel normalization method based on predictive modeling using multivariate linear regression (MLR) is applied to the data in order to reduce the variability between OA and healthy subjects. At the feature selection/extraction stage, an independent component analysis (ICA) approach is used in order to reduce the dimensionality. Finally, Naive Bayes and random forest classifiers are used for the classification task. This novel image-based approach is applied on 1024 knee X-ray images from the public database OsteoArthritis Initiative (OAI). The results show that the proposed system has a good predictive classification rate for OA detection (82.98% for accuracy, 87.15% for sensitivity and up to 80.65% for specificity). |
doi_str_mv | 10.1016/j.compmedimag.2019.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03295671v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611119300035</els_id><sourcerecordid>2230283713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-68a7fd43aefd794f46cf4f69c1336ca4b5f508c7428de1f32e9387693f07149a3</originalsourceid><addsrcrecordid>eNqNkcGOFCEQhonRuLOjr2AwXvTQLTR0A94mo-tuMsleNPFGWBp2GLuhBXqSeQ8fWDqzboxePFWo-qrqp34AXmNUY4S794dah3EaTe9GdV83CIsa4Roh9gSsMGeiQozhp2CFuGirDmN8AS5TOiCEGsTwc3BBEONUcLoCPzewN9olFzxM8zSFmGEOYYA2RGhUHE6lno3OCxAs_O6Ngbcpm7CJeR9ddgnOyfl7-K2K6gQXRctL-R6OSu-dN3Aoc3xJfoAfVVbQxjDCvP9nzI0vQWV3NC_AM6uGZF4-xDX4evXpy_a62t1-vtludpWmAuWq44rZnhJlbM8EtbTTltpOaExIpxW9a22LuGa04b3BljRGEM46QWy5AhWKrMG789y9GuQUi_Z4kkE5eb3ZySWHSCPajuEjLuzbMzvF8GM2KcvRJW2GQXkT5iQbzCmmtGFtQd_8hR7CHH35iWwaghpOWFG4BuJM6RhSisY-KsBILjbLg_zDZrnYLBGWxebS--phw3xX6o-dv30twPYMmHK-ozNRJu2M12VWLGbKPrj_WPMLCQK_1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230283713</pqid></control><display><type>article</type><title>A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Brahim, Abdelbasset ; Jennane, Rachid ; Riad, Rabia ; Janvier, Thomas ; Khedher, Laila ; Toumi, Hechmi ; Lespessailles, Eric</creator><creatorcontrib>Brahim, Abdelbasset ; Jennane, Rachid ; Riad, Rabia ; Janvier, Thomas ; Khedher, Laila ; Toumi, Hechmi ; Lespessailles, Eric</creatorcontrib><description>•A novel preprocessing step, which is based on a predictive modeling using Multivariate linear regression is employed to reduce the inter-subject variability.•Only pixel intensities are used as features to train the classifiers.•The proposed aided diagnosis method is validated on a bigger multi-centric dataset.•Compared to state-of-the-art, our approach has a higher classification rate for OA detection.
This paper presents a fully developed computer aided diagnosis (CAD) system for early knee OsteoArthritis (OA) detection using knee X-ray imaging and machine learning algorithms. The X-ray images are first preprocessed in the Fourier domain using a circular Fourier filter. Then, a novel normalization method based on predictive modeling using multivariate linear regression (MLR) is applied to the data in order to reduce the variability between OA and healthy subjects. At the feature selection/extraction stage, an independent component analysis (ICA) approach is used in order to reduce the dimensionality. Finally, Naive Bayes and random forest classifiers are used for the classification task. This novel image-based approach is applied on 1024 knee X-ray images from the public database OsteoArthritis Initiative (OAI). The results show that the proposed system has a good predictive classification rate for OA detection (82.98% for accuracy, 87.15% for sensitivity and up to 80.65% for specificity).</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2019.01.007</identifier><identifier>PMID: 30784984</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Arthritis ; Artificial intelligence ; Bayesian analysis ; Biocompatibility ; Classification ; Computer aided diagnosis system ; Decision trees ; Feature extraction ; Human health and pathology ; Image classification ; Image detection ; Independent component analysis ; Intensity normalization ; Knee ; Learning algorithms ; Life Sciences ; Machine learning ; OsteoArthritis ; Regression analysis ; Rhumatology and musculoskeletal system ; X ray imagery</subject><ispartof>Computerized medical imaging and graphics, 2019-04, Vol.73, p.11-18</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Apr 2019</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-68a7fd43aefd794f46cf4f69c1336ca4b5f508c7428de1f32e9387693f07149a3</citedby><cites>FETCH-LOGICAL-c490t-68a7fd43aefd794f46cf4f69c1336ca4b5f508c7428de1f32e9387693f07149a3</cites><orcidid>0000-0002-3569-0764 ; 0000-0002-8032-8035 ; 0000-0001-6799-962X ; 0000-0001-8626-213X ; 0000-0003-4589-7731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compmedimag.2019.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30784984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03295671$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brahim, Abdelbasset</creatorcontrib><creatorcontrib>Jennane, Rachid</creatorcontrib><creatorcontrib>Riad, Rabia</creatorcontrib><creatorcontrib>Janvier, Thomas</creatorcontrib><creatorcontrib>Khedher, Laila</creatorcontrib><creatorcontrib>Toumi, Hechmi</creatorcontrib><creatorcontrib>Lespessailles, Eric</creatorcontrib><title>A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>•A novel preprocessing step, which is based on a predictive modeling using Multivariate linear regression is employed to reduce the inter-subject variability.•Only pixel intensities are used as features to train the classifiers.•The proposed aided diagnosis method is validated on a bigger multi-centric dataset.•Compared to state-of-the-art, our approach has a higher classification rate for OA detection.
This paper presents a fully developed computer aided diagnosis (CAD) system for early knee OsteoArthritis (OA) detection using knee X-ray imaging and machine learning algorithms. The X-ray images are first preprocessed in the Fourier domain using a circular Fourier filter. Then, a novel normalization method based on predictive modeling using multivariate linear regression (MLR) is applied to the data in order to reduce the variability between OA and healthy subjects. At the feature selection/extraction stage, an independent component analysis (ICA) approach is used in order to reduce the dimensionality. Finally, Naive Bayes and random forest classifiers are used for the classification task. This novel image-based approach is applied on 1024 knee X-ray images from the public database OsteoArthritis Initiative (OAI). The results show that the proposed system has a good predictive classification rate for OA detection (82.98% for accuracy, 87.15% for sensitivity and up to 80.65% for specificity).</description><subject>Algorithms</subject><subject>Arthritis</subject><subject>Artificial intelligence</subject><subject>Bayesian analysis</subject><subject>Biocompatibility</subject><subject>Classification</subject><subject>Computer aided diagnosis system</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Human health and pathology</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Independent component analysis</subject><subject>Intensity normalization</subject><subject>Knee</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>OsteoArthritis</subject><subject>Regression analysis</subject><subject>Rhumatology and musculoskeletal system</subject><subject>X ray imagery</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkcGOFCEQhonRuLOjr2AwXvTQLTR0A94mo-tuMsleNPFGWBp2GLuhBXqSeQ8fWDqzboxePFWo-qrqp34AXmNUY4S794dah3EaTe9GdV83CIsa4Roh9gSsMGeiQozhp2CFuGirDmN8AS5TOiCEGsTwc3BBEONUcLoCPzewN9olFzxM8zSFmGEOYYA2RGhUHE6lno3OCxAs_O6Ngbcpm7CJeR9ddgnOyfl7-K2K6gQXRctL-R6OSu-dN3Aoc3xJfoAfVVbQxjDCvP9nzI0vQWV3NC_AM6uGZF4-xDX4evXpy_a62t1-vtludpWmAuWq44rZnhJlbM8EtbTTltpOaExIpxW9a22LuGa04b3BljRGEM46QWy5AhWKrMG789y9GuQUi_Z4kkE5eb3ZySWHSCPajuEjLuzbMzvF8GM2KcvRJW2GQXkT5iQbzCmmtGFtQd_8hR7CHH35iWwaghpOWFG4BuJM6RhSisY-KsBILjbLg_zDZrnYLBGWxebS--phw3xX6o-dv30twPYMmHK-ozNRJu2M12VWLGbKPrj_WPMLCQK_1g</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Brahim, Abdelbasset</creator><creator>Jennane, Rachid</creator><creator>Riad, Rabia</creator><creator>Janvier, Thomas</creator><creator>Khedher, Laila</creator><creator>Toumi, Hechmi</creator><creator>Lespessailles, Eric</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3569-0764</orcidid><orcidid>https://orcid.org/0000-0002-8032-8035</orcidid><orcidid>https://orcid.org/0000-0001-6799-962X</orcidid><orcidid>https://orcid.org/0000-0001-8626-213X</orcidid><orcidid>https://orcid.org/0000-0003-4589-7731</orcidid></search><sort><creationdate>201904</creationdate><title>A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative</title><author>Brahim, Abdelbasset ; Jennane, Rachid ; Riad, Rabia ; Janvier, Thomas ; Khedher, Laila ; Toumi, Hechmi ; Lespessailles, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-68a7fd43aefd794f46cf4f69c1336ca4b5f508c7428de1f32e9387693f07149a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arthritis</topic><topic>Artificial intelligence</topic><topic>Bayesian analysis</topic><topic>Biocompatibility</topic><topic>Classification</topic><topic>Computer aided diagnosis system</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Human health and pathology</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Independent component analysis</topic><topic>Intensity normalization</topic><topic>Knee</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>OsteoArthritis</topic><topic>Regression analysis</topic><topic>Rhumatology and musculoskeletal system</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahim, Abdelbasset</creatorcontrib><creatorcontrib>Jennane, Rachid</creatorcontrib><creatorcontrib>Riad, Rabia</creatorcontrib><creatorcontrib>Janvier, Thomas</creatorcontrib><creatorcontrib>Khedher, Laila</creatorcontrib><creatorcontrib>Toumi, Hechmi</creatorcontrib><creatorcontrib>Lespessailles, Eric</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahim, Abdelbasset</au><au>Jennane, Rachid</au><au>Riad, Rabia</au><au>Janvier, Thomas</au><au>Khedher, Laila</au><au>Toumi, Hechmi</au><au>Lespessailles, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2019-04</date><risdate>2019</risdate><volume>73</volume><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>•A novel preprocessing step, which is based on a predictive modeling using Multivariate linear regression is employed to reduce the inter-subject variability.•Only pixel intensities are used as features to train the classifiers.•The proposed aided diagnosis method is validated on a bigger multi-centric dataset.•Compared to state-of-the-art, our approach has a higher classification rate for OA detection.
This paper presents a fully developed computer aided diagnosis (CAD) system for early knee OsteoArthritis (OA) detection using knee X-ray imaging and machine learning algorithms. The X-ray images are first preprocessed in the Fourier domain using a circular Fourier filter. Then, a novel normalization method based on predictive modeling using multivariate linear regression (MLR) is applied to the data in order to reduce the variability between OA and healthy subjects. At the feature selection/extraction stage, an independent component analysis (ICA) approach is used in order to reduce the dimensionality. Finally, Naive Bayes and random forest classifiers are used for the classification task. This novel image-based approach is applied on 1024 knee X-ray images from the public database OsteoArthritis Initiative (OAI). The results show that the proposed system has a good predictive classification rate for OA detection (82.98% for accuracy, 87.15% for sensitivity and up to 80.65% for specificity).</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30784984</pmid><doi>10.1016/j.compmedimag.2019.01.007</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3569-0764</orcidid><orcidid>https://orcid.org/0000-0002-8032-8035</orcidid><orcidid>https://orcid.org/0000-0001-6799-962X</orcidid><orcidid>https://orcid.org/0000-0001-8626-213X</orcidid><orcidid>https://orcid.org/0000-0003-4589-7731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-6111 |
ispartof | Computerized medical imaging and graphics, 2019-04, Vol.73, p.11-18 |
issn | 0895-6111 1879-0771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03295671v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Arthritis Artificial intelligence Bayesian analysis Biocompatibility Classification Computer aided diagnosis system Decision trees Feature extraction Human health and pathology Image classification Image detection Independent component analysis Intensity normalization Knee Learning algorithms Life Sciences Machine learning OsteoArthritis Regression analysis Rhumatology and musculoskeletal system X ray imagery |
title | A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20decision%20support%20tool%20for%20early%20detection%20of%20knee%20OsteoArthritis%20using%20X-ray%20imaging%20and%20machine%20learning:%20Data%20from%20the%20OsteoArthritis%20Initiative&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Brahim,%20Abdelbasset&rft.date=2019-04&rft.volume=73&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2019.01.007&rft_dat=%3Cproquest_hal_p%3E2230283713%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230283713&rft_id=info:pmid/30784984&rft_els_id=S0895611119300035&rfr_iscdi=true |