Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring

Electrodeposition of earth‐abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-07, Vol.60 (31), p.16980-16983
Hauptverfasser: Godeffroy, Louis, Ciocci, Paolo, Nsabimana, Anaclet, Miranda Vieira, Mathias, Noël, Jean‐Marc, Combellas, Catherine, Lemineur, Jean‐François, Kanoufi, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16983
container_issue 31
container_start_page 16980
container_title Angewandte Chemie International Edition
container_volume 60
creator Godeffroy, Louis
Ciocci, Paolo
Nsabimana, Anaclet
Miranda Vieira, Mathias
Noël, Jean‐Marc
Combellas, Catherine
Lemineur, Jean‐François
Kanoufi, Frédéric
description Electrodeposition of earth‐abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a
doi_str_mv 10.1002/anie.202106420
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03287771v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539210985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4240-2705a57576a42de8b84cc233df675332094ea5145dab3dd14b35750b1b39b0443</originalsourceid><addsrcrecordid>eNqF0c1OGzEQB_BVRaVC6LVnS73AYYM_17vHkKaAFBKpas-W1zsppo692JtUufUReMY-CY6CQOLCySPr97fHnqL4QvCYYEwvtLcwppgSXHGKPxTHRFBSMinZUa45Y6WsBflUnKR0n31d4-q4iN_A2P4OovW_0TSsexjsYLeAfoTNAAmtQkQLa_6A-__v8VIn6NBC-9DrOFjjAM0cmCGGDvqQcjB41O6Q9mjZQ9S-C7nIUDt0G7wdwv6a0-LjSrsEn5_XUfHr--zn9LqcL69uppN5aTjluKQSCy2kkJXmtIO6rbkxlLFuVUnBGMUNBy0IF51uWdcR3rKscUta1rSYczYqzg_n3mmn-mjXOu5U0FZdT-Zqv4cZraWUZEuyPTvYPoaHDaRBrW0y4Jz2EDZJUcGa_LFNLTL9-obeh030-SVZCVrnviqZ1figTAwpRVi9dECw2o9L7celXsaVA80h8Nc62L2j1WRxM3vNPgH2oplc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552809467</pqid></control><display><type>article</type><title>Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Godeffroy, Louis ; Ciocci, Paolo ; Nsabimana, Anaclet ; Miranda Vieira, Mathias ; Noël, Jean‐Marc ; Combellas, Catherine ; Lemineur, Jean‐François ; Kanoufi, Frédéric</creator><creatorcontrib>Godeffroy, Louis ; Ciocci, Paolo ; Nsabimana, Anaclet ; Miranda Vieira, Mathias ; Noël, Jean‐Marc ; Combellas, Catherine ; Lemineur, Jean‐François ; Kanoufi, Frédéric</creatorcontrib><description>Electrodeposition of earth‐abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a &lt;25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self‐terminated growth, an information which is most often hidden in ensemble averaged measurements. The results of electrodeposition can be challenging to predict in the absence of unambiguous electrochemical signature. Operando optical microscopy correlated to ex situ SEM imaging allows probing mechanistic diversity with single nanoparticle resolution. It is illustrated by differentiating, with sub‐25 nm size limit of detection, the electrodeposition of Ni and Ni(OH)2 NPs upon Ni2+ reduction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202106420</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Analytical chemistry ; Chemical Sciences ; Electrochemistry ; Electrodeposition ; Heavy metals ; Indium tin oxides ; Light microscopy ; Material chemistry ; Nanoparticles ; Nickel ; Optical microscopy ; Reduction (metal working) ; Salts ; single nanoparticle ; Tin</subject><ispartof>Angewandte Chemie International Edition, 2021-07, Vol.60 (31), p.16980-16983</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4240-2705a57576a42de8b84cc233df675332094ea5145dab3dd14b35750b1b39b0443</citedby><cites>FETCH-LOGICAL-c4240-2705a57576a42de8b84cc233df675332094ea5145dab3dd14b35750b1b39b0443</cites><orcidid>0000-0002-8394-4650 ; 0000-0002-9784-2380 ; 0000-0002-5276-1624 ; 0000-0001-8278-7748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202106420$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202106420$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03287771$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Godeffroy, Louis</creatorcontrib><creatorcontrib>Ciocci, Paolo</creatorcontrib><creatorcontrib>Nsabimana, Anaclet</creatorcontrib><creatorcontrib>Miranda Vieira, Mathias</creatorcontrib><creatorcontrib>Noël, Jean‐Marc</creatorcontrib><creatorcontrib>Combellas, Catherine</creatorcontrib><creatorcontrib>Lemineur, Jean‐François</creatorcontrib><creatorcontrib>Kanoufi, Frédéric</creatorcontrib><title>Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring</title><title>Angewandte Chemie International Edition</title><description>Electrodeposition of earth‐abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a &lt;25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self‐terminated growth, an information which is most often hidden in ensemble averaged measurements. The results of electrodeposition can be challenging to predict in the absence of unambiguous electrochemical signature. Operando optical microscopy correlated to ex situ SEM imaging allows probing mechanistic diversity with single nanoparticle resolution. It is illustrated by differentiating, with sub‐25 nm size limit of detection, the electrodeposition of Ni and Ni(OH)2 NPs upon Ni2+ reduction.</description><subject>Analytical chemistry</subject><subject>Chemical Sciences</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Heavy metals</subject><subject>Indium tin oxides</subject><subject>Light microscopy</subject><subject>Material chemistry</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Optical microscopy</subject><subject>Reduction (metal working)</subject><subject>Salts</subject><subject>single nanoparticle</subject><subject>Tin</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0c1OGzEQB_BVRaVC6LVnS73AYYM_17vHkKaAFBKpas-W1zsppo692JtUufUReMY-CY6CQOLCySPr97fHnqL4QvCYYEwvtLcwppgSXHGKPxTHRFBSMinZUa45Y6WsBflUnKR0n31d4-q4iN_A2P4OovW_0TSsexjsYLeAfoTNAAmtQkQLa_6A-__v8VIn6NBC-9DrOFjjAM0cmCGGDvqQcjB41O6Q9mjZQ9S-C7nIUDt0G7wdwv6a0-LjSrsEn5_XUfHr--zn9LqcL69uppN5aTjluKQSCy2kkJXmtIO6rbkxlLFuVUnBGMUNBy0IF51uWdcR3rKscUta1rSYczYqzg_n3mmn-mjXOu5U0FZdT-Zqv4cZraWUZEuyPTvYPoaHDaRBrW0y4Jz2EDZJUcGa_LFNLTL9-obeh030-SVZCVrnviqZ1figTAwpRVi9dECw2o9L7celXsaVA80h8Nc62L2j1WRxM3vNPgH2oplc</recordid><startdate>20210726</startdate><enddate>20210726</enddate><creator>Godeffroy, Louis</creator><creator>Ciocci, Paolo</creator><creator>Nsabimana, Anaclet</creator><creator>Miranda Vieira, Mathias</creator><creator>Noël, Jean‐Marc</creator><creator>Combellas, Catherine</creator><creator>Lemineur, Jean‐François</creator><creator>Kanoufi, Frédéric</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8394-4650</orcidid><orcidid>https://orcid.org/0000-0002-9784-2380</orcidid><orcidid>https://orcid.org/0000-0002-5276-1624</orcidid><orcidid>https://orcid.org/0000-0001-8278-7748</orcidid></search><sort><creationdate>20210726</creationdate><title>Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring</title><author>Godeffroy, Louis ; Ciocci, Paolo ; Nsabimana, Anaclet ; Miranda Vieira, Mathias ; Noël, Jean‐Marc ; Combellas, Catherine ; Lemineur, Jean‐François ; Kanoufi, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4240-2705a57576a42de8b84cc233df675332094ea5145dab3dd14b35750b1b39b0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical chemistry</topic><topic>Chemical Sciences</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Heavy metals</topic><topic>Indium tin oxides</topic><topic>Light microscopy</topic><topic>Material chemistry</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Optical microscopy</topic><topic>Reduction (metal working)</topic><topic>Salts</topic><topic>single nanoparticle</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godeffroy, Louis</creatorcontrib><creatorcontrib>Ciocci, Paolo</creatorcontrib><creatorcontrib>Nsabimana, Anaclet</creatorcontrib><creatorcontrib>Miranda Vieira, Mathias</creatorcontrib><creatorcontrib>Noël, Jean‐Marc</creatorcontrib><creatorcontrib>Combellas, Catherine</creatorcontrib><creatorcontrib>Lemineur, Jean‐François</creatorcontrib><creatorcontrib>Kanoufi, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godeffroy, Louis</au><au>Ciocci, Paolo</au><au>Nsabimana, Anaclet</au><au>Miranda Vieira, Mathias</au><au>Noël, Jean‐Marc</au><au>Combellas, Catherine</au><au>Lemineur, Jean‐François</au><au>Kanoufi, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2021-07-26</date><risdate>2021</risdate><volume>60</volume><issue>31</issue><spage>16980</spage><epage>16983</epage><pages>16980-16983</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrodeposition of earth‐abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a &lt;25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self‐terminated growth, an information which is most often hidden in ensemble averaged measurements. The results of electrodeposition can be challenging to predict in the absence of unambiguous electrochemical signature. Operando optical microscopy correlated to ex situ SEM imaging allows probing mechanistic diversity with single nanoparticle resolution. It is illustrated by differentiating, with sub‐25 nm size limit of detection, the electrodeposition of Ni and Ni(OH)2 NPs upon Ni2+ reduction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202106420</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8394-4650</orcidid><orcidid>https://orcid.org/0000-0002-9784-2380</orcidid><orcidid>https://orcid.org/0000-0002-5276-1624</orcidid><orcidid>https://orcid.org/0000-0001-8278-7748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-07, Vol.60 (31), p.16980-16983
issn 1433-7851
1521-3773
language eng
recordid cdi_hal_primary_oai_HAL_hal_03287771v1
source Wiley Online Library Journals Frontfile Complete
subjects Analytical chemistry
Chemical Sciences
Electrochemistry
Electrodeposition
Heavy metals
Indium tin oxides
Light microscopy
Material chemistry
Nanoparticles
Nickel
Optical microscopy
Reduction (metal working)
Salts
single nanoparticle
Tin
title Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20Competitive%20Routes%20for%20Nickel%E2%80%90Based%20Nanoparticle%20Electrodeposition%20by%20an%20Operando%20Optical%20Monitoring&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Godeffroy,%20Louis&rft.date=2021-07-26&rft.volume=60&rft.issue=31&rft.spage=16980&rft.epage=16983&rft.pages=16980-16983&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202106420&rft_dat=%3Cproquest_hal_p%3E2539210985%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552809467&rft_id=info:pmid/&rfr_iscdi=true