Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction

This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation u t - u txx + α u - ∫ 0 ∞ g ( s ) u xx ( t - s ) d s + ( f ( u ) ) x = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h . The nonlinearity f is allowed to exhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2021-04, Vol.83 (2), p.813-831
Hauptverfasser: Dell’Oro, Filippo, Mammeri, Youcef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 2
container_start_page 813
container_title Applied mathematics & optimization
container_volume 83
creator Dell’Oro, Filippo
Mammeri, Youcef
description This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation u t - u txx + α u - ∫ 0 ∞ g ( s ) u xx ( t - s ) d s + ( f ( u ) ) x = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h . The nonlinearity f is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.
doi_str_mv 10.1007/s00245-019-09568-z
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03287520v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210331978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaRWLEwjO3EcZYttBSpFRKCteUkTpOqdVo7BaUr7sANOQkuQbDraqTR-39GD6FLAjcEIL51ADSMMJAEQxJxgXdHqEdCRjFw4MeoB36NQ074KTpzbgGeZ5z10P1Qm4VaVebr43NYG-XHTJW1aYPRZquaqjYueK-aMpjpVW3bQJk8eFbtUlfzMhjbKtsj5-ikUEunL35nH72ORy93Ezx9eni8G0xxxgRpsMqKvEiSIgOWUkZDmiY6AZ5nEIcqZTROIxIKEhcFgCI6pjzXKtdCF5lOmYhYH113vaVayrWtVsq2slaVnAymcr8DRkUcUXgjnr3q2LWtN1vtGrmot9b49ySNQHg3jPODFCXAGEli4SnaUZmtnbO6-DtOQO79y86_9P7lj3-58yHWhZyHzVzb_-oDqW9BLokz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210331978</pqid></control><display><type>article</type><title>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Dell’Oro, Filippo ; Mammeri, Youcef</creator><creatorcontrib>Dell’Oro, Filippo ; Mammeri, Youcef</creatorcontrib><description>This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation u t - u txx + α u - ∫ 0 ∞ g ( s ) u xx ( t - s ) d s + ( f ( u ) ) x = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h . The nonlinearity f is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-019-09568-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Fractal geometry ; Fractals ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Simulation ; Systems Theory ; Theoretical</subject><ispartof>Applied mathematics &amp; optimization, 2021-04, Vol.83 (2), p.813-831</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Applied Mathematics &amp; Optimization is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</citedby><cites>FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</cites><orcidid>0000-0003-4648-3047 ; 0000-0002-7200-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-019-09568-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-019-09568-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03287520$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dell’Oro, Filippo</creatorcontrib><creatorcontrib>Mammeri, Youcef</creatorcontrib><title>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation u t - u txx + α u - ∫ 0 ∞ g ( s ) u xx ( t - s ) d s + ( f ( u ) ) x = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h . The nonlinearity f is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.</description><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFOwzAQRS0EEqVwAVaRWLEwjO3EcZYttBSpFRKCteUkTpOqdVo7BaUr7sANOQkuQbDraqTR-39GD6FLAjcEIL51ADSMMJAEQxJxgXdHqEdCRjFw4MeoB36NQ074KTpzbgGeZ5z10P1Qm4VaVebr43NYG-XHTJW1aYPRZquaqjYueK-aMpjpVW3bQJk8eFbtUlfzMhjbKtsj5-ikUEunL35nH72ORy93Ezx9eni8G0xxxgRpsMqKvEiSIgOWUkZDmiY6AZ5nEIcqZTROIxIKEhcFgCI6pjzXKtdCF5lOmYhYH113vaVayrWtVsq2slaVnAymcr8DRkUcUXgjnr3q2LWtN1vtGrmot9b49ySNQHg3jPODFCXAGEli4SnaUZmtnbO6-DtOQO79y86_9P7lj3-58yHWhZyHzVzb_-oDqW9BLokz</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dell’Oro, Filippo</creator><creator>Mammeri, Youcef</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4648-3047</orcidid><orcidid>https://orcid.org/0000-0002-7200-4014</orcidid></search><sort><creationdate>20210401</creationdate><title>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</title><author>Dell’Oro, Filippo ; Mammeri, Youcef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell’Oro, Filippo</creatorcontrib><creatorcontrib>Mammeri, Youcef</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell’Oro, Filippo</au><au>Mammeri, Youcef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>83</volume><issue>2</issue><spage>813</spage><epage>831</epage><pages>813-831</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation u t - u txx + α u - ∫ 0 ∞ g ( s ) u xx ( t - s ) d s + ( f ( u ) ) x = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h . The nonlinearity f is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-019-09568-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4648-3047</orcidid><orcidid>https://orcid.org/0000-0002-7200-4014</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2021-04, Vol.83 (2), p.813-831
issn 0095-4616
1432-0606
language eng
recordid cdi_hal_primary_oai_HAL_hal_03287520v1
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Control
Dirichlet problem
Fractal geometry
Fractals
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Simulation
Systems Theory
Theoretical
title Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benjamin%E2%80%93Bona%E2%80%93Mahony%20Equations%20with%20Memory%20and%20Rayleigh%20Friction&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Dell%E2%80%99Oro,%20Filippo&rft.date=2021-04-01&rft.volume=83&rft.issue=2&rft.spage=813&rft.epage=831&rft.pages=813-831&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-019-09568-z&rft_dat=%3Cproquest_hal_p%3E2210331978%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210331978&rft_id=info:pmid/&rfr_iscdi=true