Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction
This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation u t - u txx + α u - ∫ 0 ∞ g ( s ) u xx ( t - s ) d s + ( f ( u ) ) x = h complemented with Dirichlet boundary conditions, in the presence of a possibly large external force h . The nonlinearity f is allowed to exhibit...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-04, Vol.83 (2), p.813-831 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 2 |
container_start_page | 813 |
container_title | Applied mathematics & optimization |
container_volume | 83 |
creator | Dell’Oro, Filippo Mammeri, Youcef |
description | This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation
u
t
-
u
txx
+
α
u
-
∫
0
∞
g
(
s
)
u
xx
(
t
-
s
)
d
s
+
(
f
(
u
)
)
x
=
h
complemented with Dirichlet boundary conditions, in the presence of a possibly large external force
h
. The nonlinearity
f
is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown. |
doi_str_mv | 10.1007/s00245-019-09568-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03287520v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2210331978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaRWLEwjO3EcZYttBSpFRKCteUkTpOqdVo7BaUr7sANOQkuQbDraqTR-39GD6FLAjcEIL51ADSMMJAEQxJxgXdHqEdCRjFw4MeoB36NQ074KTpzbgGeZ5z10P1Qm4VaVebr43NYG-XHTJW1aYPRZquaqjYueK-aMpjpVW3bQJk8eFbtUlfzMhjbKtsj5-ikUEunL35nH72ORy93Ezx9eni8G0xxxgRpsMqKvEiSIgOWUkZDmiY6AZ5nEIcqZTROIxIKEhcFgCI6pjzXKtdCF5lOmYhYH113vaVayrWtVsq2slaVnAymcr8DRkUcUXgjnr3q2LWtN1vtGrmot9b49ySNQHg3jPODFCXAGEli4SnaUZmtnbO6-DtOQO79y86_9P7lj3-58yHWhZyHzVzb_-oDqW9BLokz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210331978</pqid></control><display><type>article</type><title>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Dell’Oro, Filippo ; Mammeri, Youcef</creator><creatorcontrib>Dell’Oro, Filippo ; Mammeri, Youcef</creatorcontrib><description>This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation
u
t
-
u
txx
+
α
u
-
∫
0
∞
g
(
s
)
u
xx
(
t
-
s
)
d
s
+
(
f
(
u
)
)
x
=
h
complemented with Dirichlet boundary conditions, in the presence of a possibly large external force
h
. The nonlinearity
f
is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-019-09568-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dirichlet problem ; Fractal geometry ; Fractals ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Simulation ; Systems Theory ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2021-04, Vol.83 (2), p.813-831</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Applied Mathematics & Optimization is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</citedby><cites>FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</cites><orcidid>0000-0003-4648-3047 ; 0000-0002-7200-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-019-09568-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-019-09568-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03287520$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dell’Oro, Filippo</creatorcontrib><creatorcontrib>Mammeri, Youcef</creatorcontrib><title>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation
u
t
-
u
txx
+
α
u
-
∫
0
∞
g
(
s
)
u
xx
(
t
-
s
)
d
s
+
(
f
(
u
)
)
x
=
h
complemented with Dirichlet boundary conditions, in the presence of a possibly large external force
h
. The nonlinearity
f
is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.</description><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dirichlet problem</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFOwzAQRS0EEqVwAVaRWLEwjO3EcZYttBSpFRKCteUkTpOqdVo7BaUr7sANOQkuQbDraqTR-39GD6FLAjcEIL51ADSMMJAEQxJxgXdHqEdCRjFw4MeoB36NQ074KTpzbgGeZ5z10P1Qm4VaVebr43NYG-XHTJW1aYPRZquaqjYueK-aMpjpVW3bQJk8eFbtUlfzMhjbKtsj5-ikUEunL35nH72ORy93Ezx9eni8G0xxxgRpsMqKvEiSIgOWUkZDmiY6AZ5nEIcqZTROIxIKEhcFgCI6pjzXKtdCF5lOmYhYH113vaVayrWtVsq2slaVnAymcr8DRkUcUXgjnr3q2LWtN1vtGrmot9b49ySNQHg3jPODFCXAGEli4SnaUZmtnbO6-DtOQO79y86_9P7lj3-58yHWhZyHzVzb_-oDqW9BLokz</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Dell’Oro, Filippo</creator><creator>Mammeri, Youcef</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4648-3047</orcidid><orcidid>https://orcid.org/0000-0002-7200-4014</orcidid></search><sort><creationdate>20210401</creationdate><title>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</title><author>Dell’Oro, Filippo ; Mammeri, Youcef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-acfdf99fc03b23242b9e906dc074ab327b514817ff00a1e726deade8efceb3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dirichlet problem</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dell’Oro, Filippo</creatorcontrib><creatorcontrib>Mammeri, Youcef</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dell’Oro, Filippo</au><au>Mammeri, Youcef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>83</volume><issue>2</issue><spage>813</spage><epage>831</epage><pages>813-831</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>This paper is concerned with the integrodifferential Benjamin-Bona-Mahony equation
u
t
-
u
txx
+
α
u
-
∫
0
∞
g
(
s
)
u
xx
(
t
-
s
)
d
s
+
(
f
(
u
)
)
x
=
h
complemented with Dirichlet boundary conditions, in the presence of a possibly large external force
h
. The nonlinearity
f
is allowed to exhibit a superquadratic growth, and the dissipation is due to the simultaneous interaction between the nonlocal memory term and the Rayleigh friction. The existence of regular global and exponential attractors of finite fractal dimension is shown.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-019-09568-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4648-3047</orcidid><orcidid>https://orcid.org/0000-0002-7200-4014</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2021-04, Vol.83 (2), p.813-831 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03287520v1 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Boundary conditions Calculus of Variations and Optimal Control Optimization Control Dirichlet problem Fractal geometry Fractals Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Simulation Systems Theory Theoretical |
title | Benjamin–Bona–Mahony Equations with Memory and Rayleigh Friction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benjamin%E2%80%93Bona%E2%80%93Mahony%20Equations%20with%20Memory%20and%20Rayleigh%20Friction&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Dell%E2%80%99Oro,%20Filippo&rft.date=2021-04-01&rft.volume=83&rft.issue=2&rft.spage=813&rft.epage=831&rft.pages=813-831&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-019-09568-z&rft_dat=%3Cproquest_hal_p%3E2210331978%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210331978&rft_id=info:pmid/&rfr_iscdi=true |