A Characteristic Mapping Method for the three-dimensional incompressible Euler equations

We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2023-03, Vol.477, p.111876, Article 111876
Hauptverfasser: Yin, Xi-Yuan, Schneider, Kai, Nave, Jean-Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111876
container_title Journal of computational physics
container_volume 477
creator Yin, Xi-Yuan
Schneider, Kai
Nave, Jean-Christophe
description We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate. •A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.
doi_str_mv 10.1016/j.jcp.2022.111876
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03284611v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999122009391</els_id><sourcerecordid>S0021999122009391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekjcj2yywVMpaoUWLz14W_ZjYjakSdxNC_57UyIePQwDM-8zMA9C95SklND8sUkbO6SMMJZSSmWRX6AFJSVJWEHzS7QghNGkLEt6jW5ibAghUmRygT5WeF3roO0IwcfRW7zTw-C7T7yDse4drvqAxxqmCgCJ8wfoou873WLf2f4wBIjRmxbw87GFgOHrqMdpH2_RVaXbCHe_fYn2L8_79SbZvr--rVfbxHJOx8RYI0unBSu4KGwmmMkqA6IEaUiZa2ly6RzXLAOoMmMFEa5ixGjHhSUZ50v0MJ-tdauG4A86fKtee7VZbdV5RjiTWU7piU5ZOmdt6GMMUP0BlKizRdWoyaI6W1SzxYl5mhmYfjh5CCpaD50F5wPYUbne_0P_ANf4e1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yin, Xi-Yuan ; Schneider, Kai ; Nave, Jean-Christophe</creator><creatorcontrib>Yin, Xi-Yuan ; Schneider, Kai ; Nave, Jean-Christophe</creatorcontrib><description>We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate. •A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2022.111876</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of PDEs ; Characteristic Mapping Method ; Euler equations ; Fluid dynamics ; Fluid mechanics ; Gradient-augmented level-set method ; Mathematics ; Mechanics ; Numerical Analysis ; Physics</subject><ispartof>Journal of computational physics, 2023-03, Vol.477, p.111876, Article 111876</ispartof><rights>2023 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</citedby><cites>FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</cites><orcidid>0000-0003-0542-020X ; 0000-0003-1243-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2022.111876$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03284611$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Xi-Yuan</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Nave, Jean-Christophe</creatorcontrib><title>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</title><title>Journal of computational physics</title><description>We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate. •A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.</description><subject>Analysis of PDEs</subject><subject>Characteristic Mapping Method</subject><subject>Euler equations</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Gradient-augmented level-set method</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekjcj2yywVMpaoUWLz14W_ZjYjakSdxNC_57UyIePQwDM-8zMA9C95SklND8sUkbO6SMMJZSSmWRX6AFJSVJWEHzS7QghNGkLEt6jW5ibAghUmRygT5WeF3roO0IwcfRW7zTw-C7T7yDse4drvqAxxqmCgCJ8wfoou873WLf2f4wBIjRmxbw87GFgOHrqMdpH2_RVaXbCHe_fYn2L8_79SbZvr--rVfbxHJOx8RYI0unBSu4KGwmmMkqA6IEaUiZa2ly6RzXLAOoMmMFEa5ixGjHhSUZ50v0MJ-tdauG4A86fKtee7VZbdV5RjiTWU7piU5ZOmdt6GMMUP0BlKizRdWoyaI6W1SzxYl5mhmYfjh5CCpaD50F5wPYUbne_0P_ANf4e1Q</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Yin, Xi-Yuan</creator><creator>Schneider, Kai</creator><creator>Nave, Jean-Christophe</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0542-020X</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid></search><sort><creationdate>20230315</creationdate><title>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</title><author>Yin, Xi-Yuan ; Schneider, Kai ; Nave, Jean-Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis of PDEs</topic><topic>Characteristic Mapping Method</topic><topic>Euler equations</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Gradient-augmented level-set method</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xi-Yuan</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Nave, Jean-Christophe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xi-Yuan</au><au>Schneider, Kai</au><au>Nave, Jean-Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</atitle><jtitle>Journal of computational physics</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>477</volume><spage>111876</spage><pages>111876-</pages><artnum>111876</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate. •A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2022.111876</doi><orcidid>https://orcid.org/0000-0003-0542-020X</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2023-03, Vol.477, p.111876, Article 111876
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_03284611v1
source Access via ScienceDirect (Elsevier)
subjects Analysis of PDEs
Characteristic Mapping Method
Euler equations
Fluid dynamics
Fluid mechanics
Gradient-augmented level-set method
Mathematics
Mechanics
Numerical Analysis
Physics
title A Characteristic Mapping Method for the three-dimensional incompressible Euler equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Characteristic%20Mapping%20Method%20for%20the%20three-dimensional%20incompressible%20Euler%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Yin,%20Xi-Yuan&rft.date=2023-03-15&rft.volume=477&rft.spage=111876&rft.pages=111876-&rft.artnum=111876&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2022.111876&rft_dat=%3Celsevier_hal_p%3ES0021999122009391%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021999122009391&rfr_iscdi=true