A Characteristic Mapping Method for the three-dimensional incompressible Euler equations
We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume p...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2023-03, Vol.477, p.111876, Article 111876 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111876 |
container_title | Journal of computational physics |
container_volume | 477 |
creator | Yin, Xi-Yuan Schneider, Kai Nave, Jean-Christophe |
description | We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.
•A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation. |
doi_str_mv | 10.1016/j.jcp.2022.111876 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03284611v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999122009391</els_id><sourcerecordid>S0021999122009391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekjcj2yywVMpaoUWLz14W_ZjYjakSdxNC_57UyIePQwDM-8zMA9C95SklND8sUkbO6SMMJZSSmWRX6AFJSVJWEHzS7QghNGkLEt6jW5ibAghUmRygT5WeF3roO0IwcfRW7zTw-C7T7yDse4drvqAxxqmCgCJ8wfoou873WLf2f4wBIjRmxbw87GFgOHrqMdpH2_RVaXbCHe_fYn2L8_79SbZvr--rVfbxHJOx8RYI0unBSu4KGwmmMkqA6IEaUiZa2ly6RzXLAOoMmMFEa5ixGjHhSUZ50v0MJ-tdauG4A86fKtee7VZbdV5RjiTWU7piU5ZOmdt6GMMUP0BlKizRdWoyaI6W1SzxYl5mhmYfjh5CCpaD50F5wPYUbne_0P_ANf4e1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yin, Xi-Yuan ; Schneider, Kai ; Nave, Jean-Christophe</creator><creatorcontrib>Yin, Xi-Yuan ; Schneider, Kai ; Nave, Jean-Christophe</creatorcontrib><description>We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.
•A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2022.111876</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of PDEs ; Characteristic Mapping Method ; Euler equations ; Fluid dynamics ; Fluid mechanics ; Gradient-augmented level-set method ; Mathematics ; Mechanics ; Numerical Analysis ; Physics</subject><ispartof>Journal of computational physics, 2023-03, Vol.477, p.111876, Article 111876</ispartof><rights>2023 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</citedby><cites>FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</cites><orcidid>0000-0003-0542-020X ; 0000-0003-1243-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2022.111876$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03284611$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Xi-Yuan</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Nave, Jean-Christophe</creatorcontrib><title>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</title><title>Journal of computational physics</title><description>We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.
•A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.</description><subject>Analysis of PDEs</subject><subject>Characteristic Mapping Method</subject><subject>Euler equations</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Gradient-augmented level-set method</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Numerical Analysis</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekjcj2yywVMpaoUWLz14W_ZjYjakSdxNC_57UyIePQwDM-8zMA9C95SklND8sUkbO6SMMJZSSmWRX6AFJSVJWEHzS7QghNGkLEt6jW5ibAghUmRygT5WeF3roO0IwcfRW7zTw-C7T7yDse4drvqAxxqmCgCJ8wfoou873WLf2f4wBIjRmxbw87GFgOHrqMdpH2_RVaXbCHe_fYn2L8_79SbZvr--rVfbxHJOx8RYI0unBSu4KGwmmMkqA6IEaUiZa2ly6RzXLAOoMmMFEa5ixGjHhSUZ50v0MJ-tdauG4A86fKtee7VZbdV5RjiTWU7piU5ZOmdt6GMMUP0BlKizRdWoyaI6W1SzxYl5mhmYfjh5CCpaD50F5wPYUbne_0P_ANf4e1Q</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Yin, Xi-Yuan</creator><creator>Schneider, Kai</creator><creator>Nave, Jean-Christophe</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0542-020X</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid></search><sort><creationdate>20230315</creationdate><title>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</title><author>Yin, Xi-Yuan ; Schneider, Kai ; Nave, Jean-Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-bcb89da527357c452b4fbe59e8b096a8b68dd3a24eef4bc505df20bad35c0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis of PDEs</topic><topic>Characteristic Mapping Method</topic><topic>Euler equations</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Gradient-augmented level-set method</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Numerical Analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xi-Yuan</creatorcontrib><creatorcontrib>Schneider, Kai</creatorcontrib><creatorcontrib>Nave, Jean-Christophe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Xi-Yuan</au><au>Schneider, Kai</au><au>Nave, Jean-Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations</atitle><jtitle>Journal of computational physics</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>477</volume><spage>111876</spage><pages>111876-</pages><artnum>111876</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [1]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.
•A semi-Lagrangian approach with third-order global convergence.•Accurate long-time conservation of energy and helicity (Table 4.1).•Arbitrary subgrid resolution and non-dissipative evolution of the solution (Figs. 4.3, 4.9 and 4.10).•Accurate and efficient long time simulations at the cost of coarse grid computation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2022.111876</doi><orcidid>https://orcid.org/0000-0003-0542-020X</orcidid><orcidid>https://orcid.org/0000-0003-1243-6621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2023-03, Vol.477, p.111876, Article 111876 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03284611v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Analysis of PDEs Characteristic Mapping Method Euler equations Fluid dynamics Fluid mechanics Gradient-augmented level-set method Mathematics Mechanics Numerical Analysis Physics |
title | A Characteristic Mapping Method for the three-dimensional incompressible Euler equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Characteristic%20Mapping%20Method%20for%20the%20three-dimensional%20incompressible%20Euler%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Yin,%20Xi-Yuan&rft.date=2023-03-15&rft.volume=477&rft.spage=111876&rft.pages=111876-&rft.artnum=111876&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2022.111876&rft_dat=%3Celsevier_hal_p%3ES0021999122009391%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021999122009391&rfr_iscdi=true |