Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?

The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2021-04, Vol.320 (4), p.G485-G495
Hauptverfasser: Villard, Alexandre, Boursier, Jérôme, Andriantsitohaina, Ramaroson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page G495
container_issue 4
container_start_page G485
container_title American journal of physiology: Gastrointestinal and liver physiology
container_volume 320
creator Villard, Alexandre
Boursier, Jérôme
Andriantsitohaina, Ramaroson
description The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.
doi_str_mv 10.1152/ajpgi.00362.2020
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03284277v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518416618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-239fc5f5482646cc4b07b3e71498d6d8957f4652f7474fb6ac63a0433821de343</originalsourceid><addsrcrecordid>eNpd0U1vEzEQBmALgWhauHNClrjQwwZ_28ulKhVQpEhc4Gw53tnGwdkNtjck_x4nKT1wsjR6ZmzPi9AbSuaUSvbBrbcPYU4IV2zOCCPP0KyWWUOl0M_RjNCWN9RIfYEuc14TQiSj9CW64Fxoqjibof0n5wuk4CJ2Q4dh-uXSYSzBY9iX5DzEOEWX8A5y8BHySQ3j4KIfV2OsrnelHHAMO0i4Cxlcho94gD94G90BUsZhwGUF-GEqzVm5fcg3r9CL3sUMrx_PK_Tzy-cfd_fN4vvXb3e3i8YLpkvDeNt72UthmBLKe7EkeslBU9GaTnWmlboXSrJeCy36pXJecUcE54bRDrjgV-j6PHflot2msKn_s6ML9v52YY81wpmpV-kdrfb92W7T-HuCXOwm5OMK3ADjlC0TutXEtIZX-u4_uh6nVNdSlaRGUKWoqYqclU9jzgn6pxdQYo8J2lOC9pSgPSZYW94-Dp6WG-ieGv5Fxv8CzzmW8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518416618</pqid></control><display><type>article</type><title>Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Villard, Alexandre ; Boursier, Jérôme ; Andriantsitohaina, Ramaroson</creator><creatorcontrib>Villard, Alexandre ; Boursier, Jérôme ; Andriantsitohaina, Ramaroson</creatorcontrib><description>The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.</description><identifier>ISSN: 0193-1857</identifier><identifier>EISSN: 1522-1547</identifier><identifier>DOI: 10.1152/ajpgi.00362.2020</identifier><identifier>PMID: 33471632</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Angiogenesis ; Animals ; Bacteria ; Bacteria - metabolism ; Bacterial vesicles ; Bile acids ; Biliary tract ; Biopsy ; Digestive system ; Dysbacteriosis ; Dysbiosis ; Extracellular vesicles ; Extracellular Vesicles - metabolism ; Extracellular Vesicles - microbiology ; Fatty liver ; Fibrosis ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Host-Pathogen Interactions ; Humans ; Inflammation ; Insulin ; Insulin resistance ; Intestinal microflora ; Intestine ; Intestines - microbiology ; Life Sciences ; Lipopolysaccharides ; Liver - metabolism ; Liver diseases ; Microbiota ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - microbiology ; Pathogen-Associated Molecular Pattern Molecules - metabolism ; Portal vein ; Signal Transduction ; TLR4 protein ; Toll-like receptors</subject><ispartof>American journal of physiology: Gastrointestinal and liver physiology, 2021-04, Vol.320 (4), p.G485-G495</ispartof><rights>Copyright American Physiological Society Apr 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-239fc5f5482646cc4b07b3e71498d6d8957f4652f7474fb6ac63a0433821de343</citedby><cites>FETCH-LOGICAL-c427t-239fc5f5482646cc4b07b3e71498d6d8957f4652f7474fb6ac63a0433821de343</cites><orcidid>0000-0002-6572-4419 ; 0000-0002-4770-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3026,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33471632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-angers.hal.science/hal-03284277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villard, Alexandre</creatorcontrib><creatorcontrib>Boursier, Jérôme</creatorcontrib><creatorcontrib>Andriantsitohaina, Ramaroson</creatorcontrib><title>Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?</title><title>American journal of physiology: Gastrointestinal and liver physiology</title><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><description>The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacterial vesicles</subject><subject>Bile acids</subject><subject>Biliary tract</subject><subject>Biopsy</subject><subject>Digestive system</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Extracellular Vesicles - microbiology</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Intestines - microbiology</subject><subject>Life Sciences</subject><subject>Lipopolysaccharides</subject><subject>Liver - metabolism</subject><subject>Liver diseases</subject><subject>Microbiota</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - microbiology</subject><subject>Pathogen-Associated Molecular Pattern Molecules - metabolism</subject><subject>Portal vein</subject><subject>Signal Transduction</subject><subject>TLR4 protein</subject><subject>Toll-like receptors</subject><issn>0193-1857</issn><issn>1522-1547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0U1vEzEQBmALgWhauHNClrjQwwZ_28ulKhVQpEhc4Gw53tnGwdkNtjck_x4nKT1wsjR6ZmzPi9AbSuaUSvbBrbcPYU4IV2zOCCPP0KyWWUOl0M_RjNCWN9RIfYEuc14TQiSj9CW64Fxoqjibof0n5wuk4CJ2Q4dh-uXSYSzBY9iX5DzEOEWX8A5y8BHySQ3j4KIfV2OsrnelHHAMO0i4Cxlcho94gD94G90BUsZhwGUF-GEqzVm5fcg3r9CL3sUMrx_PK_Tzy-cfd_fN4vvXb3e3i8YLpkvDeNt72UthmBLKe7EkeslBU9GaTnWmlboXSrJeCy36pXJecUcE54bRDrjgV-j6PHflot2msKn_s6ML9v52YY81wpmpV-kdrfb92W7T-HuCXOwm5OMK3ADjlC0TutXEtIZX-u4_uh6nVNdSlaRGUKWoqYqclU9jzgn6pxdQYo8J2lOC9pSgPSZYW94-Dp6WG-ieGv5Fxv8CzzmW8A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Villard, Alexandre</creator><creator>Boursier, Jérôme</creator><creator>Andriantsitohaina, Ramaroson</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6572-4419</orcidid><orcidid>https://orcid.org/0000-0002-4770-3585</orcidid></search><sort><creationdate>20210401</creationdate><title>Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?</title><author>Villard, Alexandre ; Boursier, Jérôme ; Andriantsitohaina, Ramaroson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-239fc5f5482646cc4b07b3e71498d6d8957f4652f7474fb6ac63a0433821de343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacterial vesicles</topic><topic>Bile acids</topic><topic>Biliary tract</topic><topic>Biopsy</topic><topic>Digestive system</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Extracellular Vesicles - microbiology</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Intestines - microbiology</topic><topic>Life Sciences</topic><topic>Lipopolysaccharides</topic><topic>Liver - metabolism</topic><topic>Liver diseases</topic><topic>Microbiota</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - microbiology</topic><topic>Pathogen-Associated Molecular Pattern Molecules - metabolism</topic><topic>Portal vein</topic><topic>Signal Transduction</topic><topic>TLR4 protein</topic><topic>Toll-like receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villard, Alexandre</creatorcontrib><creatorcontrib>Boursier, Jérôme</creatorcontrib><creatorcontrib>Andriantsitohaina, Ramaroson</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villard, Alexandre</au><au>Boursier, Jérôme</au><au>Andriantsitohaina, Ramaroson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?</atitle><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>320</volume><issue>4</issue><spage>G485</spage><epage>G495</epage><pages>G485-G495</pages><issn>0193-1857</issn><eissn>1522-1547</eissn><abstract>The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>33471632</pmid><doi>10.1152/ajpgi.00362.2020</doi><orcidid>https://orcid.org/0000-0002-6572-4419</orcidid><orcidid>https://orcid.org/0000-0002-4770-3585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0193-1857
ispartof American journal of physiology: Gastrointestinal and liver physiology, 2021-04, Vol.320 (4), p.G485-G495
issn 0193-1857
1522-1547
language eng
recordid cdi_hal_primary_oai_HAL_hal_03284277v1
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Angiogenesis
Animals
Bacteria
Bacteria - metabolism
Bacterial vesicles
Bile acids
Biliary tract
Biopsy
Digestive system
Dysbacteriosis
Dysbiosis
Extracellular vesicles
Extracellular Vesicles - metabolism
Extracellular Vesicles - microbiology
Fatty liver
Fibrosis
Gastrointestinal Microbiome
Gastrointestinal tract
Host-Pathogen Interactions
Humans
Inflammation
Insulin
Insulin resistance
Intestinal microflora
Intestine
Intestines - microbiology
Life Sciences
Lipopolysaccharides
Liver - metabolism
Liver diseases
Microbiota
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - microbiology
Pathogen-Associated Molecular Pattern Molecules - metabolism
Portal vein
Signal Transduction
TLR4 protein
Toll-like receptors
title Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20and%20eukaryotic%20extracellular%20vesicles%20and%20nonalcoholic%20fatty%20liver%20disease:%20new%20players%20in%20the%20gut-liver%20axis?&rft.jtitle=American%20journal%20of%20physiology:%20Gastrointestinal%20and%20liver%20physiology&rft.au=Villard,%20Alexandre&rft.date=2021-04-01&rft.volume=320&rft.issue=4&rft.spage=G485&rft.epage=G495&rft.pages=G485-G495&rft.issn=0193-1857&rft.eissn=1522-1547&rft_id=info:doi/10.1152/ajpgi.00362.2020&rft_dat=%3Cproquest_hal_p%3E2518416618%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518416618&rft_id=info:pmid/33471632&rfr_iscdi=true