Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque
AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full p...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2021-08, Vol.10 (16), p.e2100656-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2100656 |
container_title | Advanced healthcare materials |
container_volume | 10 |
creator | Tran, Vu‐Long Lux, François Tournier, Nicolas Jego, Benoit Maître, Xavier Anisorac, Maria Comtat, Claude Jan, Sébastien Selmeczi, Katalin Evans, Michael J. Tillement, Olivier Kuhnast, Bertrand Truillet, Charles |
description | AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full potential of this technology. In this study, it is shown that 89Zr can be labeled on such NPs directly for positron emission tomography (PET) imaging with a simple and scalable method. The stability of such complexes is remarkable in vitro and in vivo. Using a glioblastoma orthotopic rat model, it is shown that injected 89Zr‐AGuIX is detectable inside the tumor for at least 1 week. Interestingly, the particles seem to efficiently infiltrate the tumor even in necrotic areas, which places great hope for the treatment of radioresistant tumor. Lastly, the first PET/MR whole‐body imaging is performed in non‐human primate (NHP), which further demonstrates the translational potential of these bimodal NP.
AGuIX nanoparticle is a promising tumor‐targeted enhancer for radiotherapy (RT). It is found that AGuIX can be directly 89Zr‐radiolabeled without modifying its physicochemical structure to monitor its whole‐body pharmacokinetic and tumor uptake by positron emission tomography (PET) imaging. This dynamic imaging is crucial for fractionated radiation dose personalization. Labeled particles show particular prolonged retention in the tumor especially in necrosis, highly radioresistant areas. |
doi_str_mv | 10.1002/adhm.202100656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03283723v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548415923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3846-df9a564d47e36a6a96645b8985ea22009cc7b02c2bc629273b95642743fdb0073</originalsourceid><addsrcrecordid>eNqF0U1v0zAYB_AIgcS07crZEhc4tPglcWJu0ShtpZaNMSRu1hPHWTycuNjOUL_OPikuRUXiwskv-j2PH-ufZa8InhOM6Tto-2FOMU0HXvBn2Rklgs4oL8Tz0z7HL7PLEB4wPiDCK3KWPX2eYIwmQjSPGt2ZECaNbnrwAyj33Yw6GhUQjC1a3NyiRddpFZHrUL2c1t_QJxjdDnwyVof3qEbbyUYzuBYsWg9wb8Z79CVO7R6ZMTVB1z72LrqdUWhpjWsshOgGQLcQ0da12v5-aaXBxn6PtqDgx6Qvshcd2KAv_6zn2dePi7ur1WxzvVxf1ZuZYlXOZ20noOB5m5eaceAgOM-LphJVoYFSjIVSZYOpoo3iVNCSNSJxWuasaxuMS3aevT327cHKnTcD-L10YOSq3sjDHWa0YiVljyTZN0e78y6NGKIcTFDaWhi1m4KkRV7lpBCUJfr6H_rgJj-mnyTFSVVyXBRJzY9KeReC191pAoLlIWF5SFieEk4F4ljw01i9_4-W9YfV9m_tL38GqQs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561876055</pqid></control><display><type>article</type><title>Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tran, Vu‐Long ; Lux, François ; Tournier, Nicolas ; Jego, Benoit ; Maître, Xavier ; Anisorac, Maria ; Comtat, Claude ; Jan, Sébastien ; Selmeczi, Katalin ; Evans, Michael J. ; Tillement, Olivier ; Kuhnast, Bertrand ; Truillet, Charles</creator><creatorcontrib>Tran, Vu‐Long ; Lux, François ; Tournier, Nicolas ; Jego, Benoit ; Maître, Xavier ; Anisorac, Maria ; Comtat, Claude ; Jan, Sébastien ; Selmeczi, Katalin ; Evans, Michael J. ; Tillement, Olivier ; Kuhnast, Bertrand ; Truillet, Charles</creatorcontrib><description>AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full potential of this technology. In this study, it is shown that 89Zr can be labeled on such NPs directly for positron emission tomography (PET) imaging with a simple and scalable method. The stability of such complexes is remarkable in vitro and in vivo. Using a glioblastoma orthotopic rat model, it is shown that injected 89Zr‐AGuIX is detectable inside the tumor for at least 1 week. Interestingly, the particles seem to efficiently infiltrate the tumor even in necrotic areas, which places great hope for the treatment of radioresistant tumor. Lastly, the first PET/MR whole‐body imaging is performed in non‐human primate (NHP), which further demonstrates the translational potential of these bimodal NP.
AGuIX nanoparticle is a promising tumor‐targeted enhancer for radiotherapy (RT). It is found that AGuIX can be directly 89Zr‐radiolabeled without modifying its physicochemical structure to monitor its whole‐body pharmacokinetic and tumor uptake by positron emission tomography (PET) imaging. This dynamic imaging is crucial for fractionated radiation dose personalization. Labeled particles show particular prolonged retention in the tumor especially in necrosis, highly radioresistant areas.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202100656</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Brain cancer ; Chemical Sciences ; Engineering Sciences ; EPR effects ; Gadolinium ; Glioblastoma ; Human performance ; Imaging techniques ; In vivo methods and tests ; Magnetic resonance imaging ; Medical imaging ; Nanoparticles ; PET imaging ; Pharmacokinetics ; Physics ; Positron emission ; Positron emission tomography ; Radiation therapy ; radiolabeling ; Tomography ; Tumors ; Zirconium isotopes</subject><ispartof>Advanced healthcare materials, 2021-08, Vol.10 (16), p.e2100656-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3846-df9a564d47e36a6a96645b8985ea22009cc7b02c2bc629273b95642743fdb0073</citedby><cites>FETCH-LOGICAL-c3846-df9a564d47e36a6a96645b8985ea22009cc7b02c2bc629273b95642743fdb0073</cites><orcidid>0000-0002-1782-5418 ; 0000-0003-3291-3309 ; 0000-0001-7166-6537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202100656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202100656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03283723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Vu‐Long</creatorcontrib><creatorcontrib>Lux, François</creatorcontrib><creatorcontrib>Tournier, Nicolas</creatorcontrib><creatorcontrib>Jego, Benoit</creatorcontrib><creatorcontrib>Maître, Xavier</creatorcontrib><creatorcontrib>Anisorac, Maria</creatorcontrib><creatorcontrib>Comtat, Claude</creatorcontrib><creatorcontrib>Jan, Sébastien</creatorcontrib><creatorcontrib>Selmeczi, Katalin</creatorcontrib><creatorcontrib>Evans, Michael J.</creatorcontrib><creatorcontrib>Tillement, Olivier</creatorcontrib><creatorcontrib>Kuhnast, Bertrand</creatorcontrib><creatorcontrib>Truillet, Charles</creatorcontrib><title>Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque</title><title>Advanced healthcare materials</title><description>AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full potential of this technology. In this study, it is shown that 89Zr can be labeled on such NPs directly for positron emission tomography (PET) imaging with a simple and scalable method. The stability of such complexes is remarkable in vitro and in vivo. Using a glioblastoma orthotopic rat model, it is shown that injected 89Zr‐AGuIX is detectable inside the tumor for at least 1 week. Interestingly, the particles seem to efficiently infiltrate the tumor even in necrotic areas, which places great hope for the treatment of radioresistant tumor. Lastly, the first PET/MR whole‐body imaging is performed in non‐human primate (NHP), which further demonstrates the translational potential of these bimodal NP.
AGuIX nanoparticle is a promising tumor‐targeted enhancer for radiotherapy (RT). It is found that AGuIX can be directly 89Zr‐radiolabeled without modifying its physicochemical structure to monitor its whole‐body pharmacokinetic and tumor uptake by positron emission tomography (PET) imaging. This dynamic imaging is crucial for fractionated radiation dose personalization. Labeled particles show particular prolonged retention in the tumor especially in necrosis, highly radioresistant areas.</description><subject>Brain cancer</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>EPR effects</subject><subject>Gadolinium</subject><subject>Glioblastoma</subject><subject>Human performance</subject><subject>Imaging techniques</subject><subject>In vivo methods and tests</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>PET imaging</subject><subject>Pharmacokinetics</subject><subject>Physics</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radiation therapy</subject><subject>radiolabeling</subject><subject>Tomography</subject><subject>Tumors</subject><subject>Zirconium isotopes</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v0zAYB_AIgcS07crZEhc4tPglcWJu0ShtpZaNMSRu1hPHWTycuNjOUL_OPikuRUXiwskv-j2PH-ufZa8InhOM6Tto-2FOMU0HXvBn2Rklgs4oL8Tz0z7HL7PLEB4wPiDCK3KWPX2eYIwmQjSPGt2ZECaNbnrwAyj33Yw6GhUQjC1a3NyiRddpFZHrUL2c1t_QJxjdDnwyVof3qEbbyUYzuBYsWg9wb8Z79CVO7R6ZMTVB1z72LrqdUWhpjWsshOgGQLcQ0da12v5-aaXBxn6PtqDgx6Qvshcd2KAv_6zn2dePi7ur1WxzvVxf1ZuZYlXOZ20noOB5m5eaceAgOM-LphJVoYFSjIVSZYOpoo3iVNCSNSJxWuasaxuMS3aevT327cHKnTcD-L10YOSq3sjDHWa0YiVljyTZN0e78y6NGKIcTFDaWhi1m4KkRV7lpBCUJfr6H_rgJj-mnyTFSVVyXBRJzY9KeReC191pAoLlIWF5SFieEk4F4ljw01i9_4-W9YfV9m_tL38GqQs</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Tran, Vu‐Long</creator><creator>Lux, François</creator><creator>Tournier, Nicolas</creator><creator>Jego, Benoit</creator><creator>Maître, Xavier</creator><creator>Anisorac, Maria</creator><creator>Comtat, Claude</creator><creator>Jan, Sébastien</creator><creator>Selmeczi, Katalin</creator><creator>Evans, Michael J.</creator><creator>Tillement, Olivier</creator><creator>Kuhnast, Bertrand</creator><creator>Truillet, Charles</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1782-5418</orcidid><orcidid>https://orcid.org/0000-0003-3291-3309</orcidid><orcidid>https://orcid.org/0000-0001-7166-6537</orcidid></search><sort><creationdate>20210801</creationdate><title>Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque</title><author>Tran, Vu‐Long ; Lux, François ; Tournier, Nicolas ; Jego, Benoit ; Maître, Xavier ; Anisorac, Maria ; Comtat, Claude ; Jan, Sébastien ; Selmeczi, Katalin ; Evans, Michael J. ; Tillement, Olivier ; Kuhnast, Bertrand ; Truillet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3846-df9a564d47e36a6a96645b8985ea22009cc7b02c2bc629273b95642743fdb0073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain cancer</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>EPR effects</topic><topic>Gadolinium</topic><topic>Glioblastoma</topic><topic>Human performance</topic><topic>Imaging techniques</topic><topic>In vivo methods and tests</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>PET imaging</topic><topic>Pharmacokinetics</topic><topic>Physics</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radiation therapy</topic><topic>radiolabeling</topic><topic>Tomography</topic><topic>Tumors</topic><topic>Zirconium isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Vu‐Long</creatorcontrib><creatorcontrib>Lux, François</creatorcontrib><creatorcontrib>Tournier, Nicolas</creatorcontrib><creatorcontrib>Jego, Benoit</creatorcontrib><creatorcontrib>Maître, Xavier</creatorcontrib><creatorcontrib>Anisorac, Maria</creatorcontrib><creatorcontrib>Comtat, Claude</creatorcontrib><creatorcontrib>Jan, Sébastien</creatorcontrib><creatorcontrib>Selmeczi, Katalin</creatorcontrib><creatorcontrib>Evans, Michael J.</creatorcontrib><creatorcontrib>Tillement, Olivier</creatorcontrib><creatorcontrib>Kuhnast, Bertrand</creatorcontrib><creatorcontrib>Truillet, Charles</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Vu‐Long</au><au>Lux, François</au><au>Tournier, Nicolas</au><au>Jego, Benoit</au><au>Maître, Xavier</au><au>Anisorac, Maria</au><au>Comtat, Claude</au><au>Jan, Sébastien</au><au>Selmeczi, Katalin</au><au>Evans, Michael J.</au><au>Tillement, Olivier</au><au>Kuhnast, Bertrand</au><au>Truillet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque</atitle><jtitle>Advanced healthcare materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>10</volume><issue>16</issue><spage>e2100656</spage><epage>n/a</epage><pages>e2100656-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full potential of this technology. In this study, it is shown that 89Zr can be labeled on such NPs directly for positron emission tomography (PET) imaging with a simple and scalable method. The stability of such complexes is remarkable in vitro and in vivo. Using a glioblastoma orthotopic rat model, it is shown that injected 89Zr‐AGuIX is detectable inside the tumor for at least 1 week. Interestingly, the particles seem to efficiently infiltrate the tumor even in necrotic areas, which places great hope for the treatment of radioresistant tumor. Lastly, the first PET/MR whole‐body imaging is performed in non‐human primate (NHP), which further demonstrates the translational potential of these bimodal NP.
AGuIX nanoparticle is a promising tumor‐targeted enhancer for radiotherapy (RT). It is found that AGuIX can be directly 89Zr‐radiolabeled without modifying its physicochemical structure to monitor its whole‐body pharmacokinetic and tumor uptake by positron emission tomography (PET) imaging. This dynamic imaging is crucial for fractionated radiation dose personalization. Labeled particles show particular prolonged retention in the tumor especially in necrosis, highly radioresistant areas.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adhm.202100656</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1782-5418</orcidid><orcidid>https://orcid.org/0000-0003-3291-3309</orcidid><orcidid>https://orcid.org/0000-0001-7166-6537</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2021-08, Vol.10 (16), p.e2100656-n/a |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03283723v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Brain cancer Chemical Sciences Engineering Sciences EPR effects Gadolinium Glioblastoma Human performance Imaging techniques In vivo methods and tests Magnetic resonance imaging Medical imaging Nanoparticles PET imaging Pharmacokinetics Physics Positron emission Positron emission tomography Radiation therapy radiolabeling Tomography Tumors Zirconium isotopes |
title | Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Tissue%20Pharmacokinetics%20and%20EPR%20Effect%20of%20AGuIX%20Nanoparticles:%20A%20Multimodal%20Imaging%20Study%20in%20an%20Orthotopic%20Glioblastoma%20Rat%20Model%20and%20Healthy%20Macaque&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Tran,%20Vu%E2%80%90Long&rft.date=2021-08-01&rft.volume=10&rft.issue=16&rft.spage=e2100656&rft.epage=n/a&rft.pages=e2100656-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202100656&rft_dat=%3Cproquest_hal_p%3E2548415923%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561876055&rft_id=info:pmid/&rfr_iscdi=true |