Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

•Models are calibrated over 4 years to predict sugarcane yield before the harvest.•Combining Landsat images, meteorological and agronomic data improve the sugarcane yield prediction.•The NDMI index derived from Landsat images is one of the most important predictors.•Including expected harvest date i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2021-05, Vol.184, p.106063, Article 106063
Hauptverfasser: Luciano, Ana Cláudia dos Santos, Picoli, Michelle Cristina Araújo, Duft, Daniel Garbellini, Rocha, Jansle Vieira, Leal, Manoel Regis Lima Verde, le Maire, Guerric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!