Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation

[Display omitted] •Tailor-made complex consortium successfully used for kombucha fermentations.•Dynamic changes in consortium species abundances linked to biochemical changes.•Consortium linked biofilm formation studied by CLSM and SEM.•Kombucha volatilome was elucidated by HS/GC-MS. Kombucha is a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food research international 2021-09, Vol.147, p.110549-110549, Article 110549
Hauptverfasser: Savary, Océane, Mounier, Jérôme, Thierry, Anne, Poirier, Elisabeth, Jourdren, Julie, Maillard, Marie-Bernadette, Penland, Marine, Decamps, Christophe, Coton, Emmanuel, Coton, Monika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110549
container_issue
container_start_page 110549
container_title Food research international
container_volume 147
creator Savary, Océane
Mounier, Jérôme
Thierry, Anne
Poirier, Elisabeth
Jourdren, Julie
Maillard, Marie-Bernadette
Penland, Marine
Decamps, Christophe
Coton, Emmanuel
Coton, Monika
description [Display omitted] •Tailor-made complex consortium successfully used for kombucha fermentations.•Dynamic changes in consortium species abundances linked to biochemical changes.•Consortium linked biofilm formation studied by CLSM and SEM.•Kombucha volatilome was elucidated by HS/GC-MS. Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.
doi_str_mv 10.1016/j.foodres.2021.110549
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03279810v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963996921004488</els_id><sourcerecordid>2562234165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-d7cbaa13ae8bc4b961518c2e9381e9f1a7aeed845429ea0ba7415c2700d002293</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH78BKFHPXTNpE3beJFF_MIVL3oO03TqZmmbNWlF_73drXj1FGZ43gcyL2NnwOfAIbtcz2vnKk9hLriAOQCXqdpjMyjyJM4hlftsxlWWxEpl6pAdhbDmnGcyVzP29Yq2cT5usaKotca70mITGdcF53s7tFHtfPTk2nIwK4xq8i11PfbWdVfR88S7HmPbVYOhKhons6JRtJWssHunEGG329e22dnaXfqEHdTYBDr9fY_Z293t681DvHy5f7xZLGOTiqSPq9yUiJAgFaVJS5WBhMIIUkkBpGrAHImqIpWpUIS8xDwFaUTOecW5ECo5ZheTd4WN3njbov_WDq1-WCz1dscTkasC-KcY2fOJ3Xj3MVDodWuDoabBjtwQtJCZEEkKmRxROaHjBULwVP-5gettK3qtf1vR21b01MqYu55yNP7505LXwVjqxtNZT6bXlbP_GH4AxzWaQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562234165</pqid></control><display><type>article</type><title>Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation</title><source>Elsevier ScienceDirect Journals</source><creator>Savary, Océane ; Mounier, Jérôme ; Thierry, Anne ; Poirier, Elisabeth ; Jourdren, Julie ; Maillard, Marie-Bernadette ; Penland, Marine ; Decamps, Christophe ; Coton, Emmanuel ; Coton, Monika</creator><creatorcontrib>Savary, Océane ; Mounier, Jérôme ; Thierry, Anne ; Poirier, Elisabeth ; Jourdren, Julie ; Maillard, Marie-Bernadette ; Penland, Marine ; Decamps, Christophe ; Coton, Emmanuel ; Coton, Monika</creatorcontrib><description>[Display omitted] •Tailor-made complex consortium successfully used for kombucha fermentations.•Dynamic changes in consortium species abundances linked to biochemical changes.•Consortium linked biofilm formation studied by CLSM and SEM.•Kombucha volatilome was elucidated by HS/GC-MS. Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.</description><identifier>ISSN: 0963-9969</identifier><identifier>EISSN: 1873-7145</identifier><identifier>DOI: 10.1016/j.foodres.2021.110549</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biochemical changes ; Biofilm ; Confocal microscopy ; Fermentation dynamics ; Food and Nutrition ; Kombucha ; Life Sciences ; Metagenetics ; SEM</subject><ispartof>Food research international, 2021-09, Vol.147, p.110549-110549, Article 110549</ispartof><rights>2021 Elsevier Ltd</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-d7cbaa13ae8bc4b961518c2e9381e9f1a7aeed845429ea0ba7415c2700d002293</citedby><cites>FETCH-LOGICAL-c423t-d7cbaa13ae8bc4b961518c2e9381e9f1a7aeed845429ea0ba7415c2700d002293</cites><orcidid>0000-0002-8290-6898 ; 0000-0003-0912-8804 ; 0000-0003-3859-9760 ; 0000-0002-0148-6802 ; 0000-0002-9170-2889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0963996921004488$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03279810$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Savary, Océane</creatorcontrib><creatorcontrib>Mounier, Jérôme</creatorcontrib><creatorcontrib>Thierry, Anne</creatorcontrib><creatorcontrib>Poirier, Elisabeth</creatorcontrib><creatorcontrib>Jourdren, Julie</creatorcontrib><creatorcontrib>Maillard, Marie-Bernadette</creatorcontrib><creatorcontrib>Penland, Marine</creatorcontrib><creatorcontrib>Decamps, Christophe</creatorcontrib><creatorcontrib>Coton, Emmanuel</creatorcontrib><creatorcontrib>Coton, Monika</creatorcontrib><title>Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation</title><title>Food research international</title><description>[Display omitted] •Tailor-made complex consortium successfully used for kombucha fermentations.•Dynamic changes in consortium species abundances linked to biochemical changes.•Consortium linked biofilm formation studied by CLSM and SEM.•Kombucha volatilome was elucidated by HS/GC-MS. Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.</description><subject>Biochemical changes</subject><subject>Biofilm</subject><subject>Confocal microscopy</subject><subject>Fermentation dynamics</subject><subject>Food and Nutrition</subject><subject>Kombucha</subject><subject>Life Sciences</subject><subject>Metagenetics</subject><subject>SEM</subject><issn>0963-9969</issn><issn>1873-7145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouH78BKFHPXTNpE3beJFF_MIVL3oO03TqZmmbNWlF_73drXj1FGZ43gcyL2NnwOfAIbtcz2vnKk9hLriAOQCXqdpjMyjyJM4hlftsxlWWxEpl6pAdhbDmnGcyVzP29Yq2cT5usaKotca70mITGdcF53s7tFHtfPTk2nIwK4xq8i11PfbWdVfR88S7HmPbVYOhKhons6JRtJWssHunEGG329e22dnaXfqEHdTYBDr9fY_Z293t681DvHy5f7xZLGOTiqSPq9yUiJAgFaVJS5WBhMIIUkkBpGrAHImqIpWpUIS8xDwFaUTOecW5ECo5ZheTd4WN3njbov_WDq1-WCz1dscTkasC-KcY2fOJ3Xj3MVDodWuDoabBjtwQtJCZEEkKmRxROaHjBULwVP-5gettK3qtf1vR21b01MqYu55yNP7505LXwVjqxtNZT6bXlbP_GH4AxzWaQg</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Savary, Océane</creator><creator>Mounier, Jérôme</creator><creator>Thierry, Anne</creator><creator>Poirier, Elisabeth</creator><creator>Jourdren, Julie</creator><creator>Maillard, Marie-Bernadette</creator><creator>Penland, Marine</creator><creator>Decamps, Christophe</creator><creator>Coton, Emmanuel</creator><creator>Coton, Monika</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8290-6898</orcidid><orcidid>https://orcid.org/0000-0003-0912-8804</orcidid><orcidid>https://orcid.org/0000-0003-3859-9760</orcidid><orcidid>https://orcid.org/0000-0002-0148-6802</orcidid><orcidid>https://orcid.org/0000-0002-9170-2889</orcidid></search><sort><creationdate>202109</creationdate><title>Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation</title><author>Savary, Océane ; Mounier, Jérôme ; Thierry, Anne ; Poirier, Elisabeth ; Jourdren, Julie ; Maillard, Marie-Bernadette ; Penland, Marine ; Decamps, Christophe ; Coton, Emmanuel ; Coton, Monika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-d7cbaa13ae8bc4b961518c2e9381e9f1a7aeed845429ea0ba7415c2700d002293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemical changes</topic><topic>Biofilm</topic><topic>Confocal microscopy</topic><topic>Fermentation dynamics</topic><topic>Food and Nutrition</topic><topic>Kombucha</topic><topic>Life Sciences</topic><topic>Metagenetics</topic><topic>SEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savary, Océane</creatorcontrib><creatorcontrib>Mounier, Jérôme</creatorcontrib><creatorcontrib>Thierry, Anne</creatorcontrib><creatorcontrib>Poirier, Elisabeth</creatorcontrib><creatorcontrib>Jourdren, Julie</creatorcontrib><creatorcontrib>Maillard, Marie-Bernadette</creatorcontrib><creatorcontrib>Penland, Marine</creatorcontrib><creatorcontrib>Decamps, Christophe</creatorcontrib><creatorcontrib>Coton, Emmanuel</creatorcontrib><creatorcontrib>Coton, Monika</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Food research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savary, Océane</au><au>Mounier, Jérôme</au><au>Thierry, Anne</au><au>Poirier, Elisabeth</au><au>Jourdren, Julie</au><au>Maillard, Marie-Bernadette</au><au>Penland, Marine</au><au>Decamps, Christophe</au><au>Coton, Emmanuel</au><au>Coton, Monika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation</atitle><jtitle>Food research international</jtitle><date>2021-09</date><risdate>2021</risdate><volume>147</volume><spage>110549</spage><epage>110549</epage><pages>110549-110549</pages><artnum>110549</artnum><issn>0963-9969</issn><eissn>1873-7145</eissn><abstract>[Display omitted] •Tailor-made complex consortium successfully used for kombucha fermentations.•Dynamic changes in consortium species abundances linked to biochemical changes.•Consortium linked biofilm formation studied by CLSM and SEM.•Kombucha volatilome was elucidated by HS/GC-MS. Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.foodres.2021.110549</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8290-6898</orcidid><orcidid>https://orcid.org/0000-0003-0912-8804</orcidid><orcidid>https://orcid.org/0000-0003-3859-9760</orcidid><orcidid>https://orcid.org/0000-0002-0148-6802</orcidid><orcidid>https://orcid.org/0000-0002-9170-2889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-9969
ispartof Food research international, 2021-09, Vol.147, p.110549-110549, Article 110549
issn 0963-9969
1873-7145
language eng
recordid cdi_hal_primary_oai_HAL_hal_03279810v2
source Elsevier ScienceDirect Journals
subjects Biochemical changes
Biofilm
Confocal microscopy
Fermentation dynamics
Food and Nutrition
Kombucha
Life Sciences
Metagenetics
SEM
title Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailor-made%20microbial%20consortium%20for%20Kombucha%20fermentation:%20Microbiota-induced%20biochemical%20changes%20and%20biofilm%20formation&rft.jtitle=Food%20research%20international&rft.au=Savary,%20Oc%C3%A9ane&rft.date=2021-09&rft.volume=147&rft.spage=110549&rft.epage=110549&rft.pages=110549-110549&rft.artnum=110549&rft.issn=0963-9969&rft.eissn=1873-7145&rft_id=info:doi/10.1016/j.foodres.2021.110549&rft_dat=%3Cproquest_hal_p%3E2562234165%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562234165&rft_id=info:pmid/&rft_els_id=S0963996921004488&rfr_iscdi=true