Basic constraints for design optimization of cubic and bistable NES
This work mainly concentrates on the optimization of cubic and bistable NES to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex var...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and acoustics 2022-03, Vol.144 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of vibration and acoustics |
container_volume | 144 |
creator | Wu, Zhenhang Seguy, Sébastien Paredes, Manuel |
description | This work mainly concentrates on the optimization of cubic and bistable NES to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when SMR disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This work offers some fundamental insights into the optimal design of cubic and bistable NES. |
doi_str_mv | 10.1115/1.4051548 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03273247v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03273247v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03273247v13</originalsourceid><addsrcrecordid>eNqVir0KwjAURoMo-Dv4BlkdqrlJQ9tRRXEQF93L7Z9eaZvSREGf3gq-gNP5zsdhbA5iCQB6BUtfaNB-2GMj0DL0wkgG_W4LP_QiIeSQja29CwFKaT1i2w1aSnlqautapNpZXpiWZ7mla81N46iiNzoynRQ8fSRdjHXGE7IOkzLnp915ygYFljaf_Thhi_3usj14NyzjpqUK21dskOLD-hh_P6FkoKQfPEH9034AtAJCag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Basic constraints for design optimization of cubic and bistable NES</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Wu, Zhenhang ; Seguy, Sébastien ; Paredes, Manuel</creator><creatorcontrib>Wu, Zhenhang ; Seguy, Sébastien ; Paredes, Manuel</creatorcontrib><description>This work mainly concentrates on the optimization of cubic and bistable NES to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when SMR disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This work offers some fundamental insights into the optimal design of cubic and bistable NES.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.4051548</identifier><language>eng</language><publisher>American Society of Mechanical Engineers</publisher><subject>Engineering Sciences ; Mechanics ; Vibrations</subject><ispartof>Journal of vibration and acoustics, 2022-03, Vol.144 (2)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5177-4490 ; 0000-0003-0576-4782 ; 0000-0002-5177-4490 ; 0000-0003-0576-4782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-03273247$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhenhang</creatorcontrib><creatorcontrib>Seguy, Sébastien</creatorcontrib><creatorcontrib>Paredes, Manuel</creatorcontrib><title>Basic constraints for design optimization of cubic and bistable NES</title><title>Journal of vibration and acoustics</title><description>This work mainly concentrates on the optimization of cubic and bistable NES to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when SMR disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This work offers some fundamental insights into the optimal design of cubic and bistable NES.</description><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Vibrations</subject><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAURoMo-Dv4BlkdqrlJQ9tRRXEQF93L7Z9eaZvSREGf3gq-gNP5zsdhbA5iCQB6BUtfaNB-2GMj0DL0wkgG_W4LP_QiIeSQja29CwFKaT1i2w1aSnlqautapNpZXpiWZ7mla81N46iiNzoynRQ8fSRdjHXGE7IOkzLnp915ygYFljaf_Thhi_3usj14NyzjpqUK21dskOLD-hh_P6FkoKQfPEH9034AtAJCag</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Wu, Zhenhang</creator><creator>Seguy, Sébastien</creator><creator>Paredes, Manuel</creator><general>American Society of Mechanical Engineers</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5177-4490</orcidid><orcidid>https://orcid.org/0000-0003-0576-4782</orcidid><orcidid>https://orcid.org/0000-0002-5177-4490</orcidid><orcidid>https://orcid.org/0000-0003-0576-4782</orcidid></search><sort><creationdate>202203</creationdate><title>Basic constraints for design optimization of cubic and bistable NES</title><author>Wu, Zhenhang ; Seguy, Sébastien ; Paredes, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03273247v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhenhang</creatorcontrib><creatorcontrib>Seguy, Sébastien</creatorcontrib><creatorcontrib>Paredes, Manuel</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhenhang</au><au>Seguy, Sébastien</au><au>Paredes, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic constraints for design optimization of cubic and bistable NES</atitle><jtitle>Journal of vibration and acoustics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>144</volume><issue>2</issue><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>This work mainly concentrates on the optimization of cubic and bistable NES to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when SMR disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This work offers some fundamental insights into the optimal design of cubic and bistable NES.</abstract><pub>American Society of Mechanical Engineers</pub><doi>10.1115/1.4051548</doi><orcidid>https://orcid.org/0000-0002-5177-4490</orcidid><orcidid>https://orcid.org/0000-0003-0576-4782</orcidid><orcidid>https://orcid.org/0000-0002-5177-4490</orcidid><orcidid>https://orcid.org/0000-0003-0576-4782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-9002 |
ispartof | Journal of vibration and acoustics, 2022-03, Vol.144 (2) |
issn | 1048-9002 1528-8927 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03273247v1 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Engineering Sciences Mechanics Vibrations |
title | Basic constraints for design optimization of cubic and bistable NES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20constraints%20for%20design%20optimization%20of%20cubic%20and%20bistable%20NES&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Wu,%20Zhenhang&rft.date=2022-03&rft.volume=144&rft.issue=2&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.4051548&rft_dat=%3Chal%3Eoai_HAL_hal_03273247v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |