Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study
•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2021-04, Vol.396, p.127230, Article 127230 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 127230 |
container_title | Physics letters. A |
container_volume | 396 |
creator | Egorov, V. Maksimova, O. Koibuchi, H. Bernard, C. Chenal, J.-M. Lame, O. Diguet, G. Sebald, G. Cavaille, J.-Y. Takagi, T. |
description | •Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters.
Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally. |
doi_str_mv | 10.1016/j.physleta.2021.127230 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03265515v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960121000943</els_id><sourcerecordid>S0375960121000943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxC8hbFim2k9gJK6qqpUhFbGBtOfa4dZXEkR0q5e9JCbBlNdLonjuag9AdJXNKKH84zLv9EGvo1ZwRRueUCZaSMzSjhUgTlrHyHM1IKvKk5IReoqsYD4SMJClnyK1q0H3wDei9ap1WNe6C7yD0DiL2FlsIwcN3yGnc-XpoIMRHvHbteDPgHYxsHwbceAO1a3dYtQYr_OrbHvBShdrj2H-a4QZdWFVHuP2Z1-hjvXpfbpLt2_PLcrFNdMZJnwhbZZaIUqmKGc5VyjPBCmZyLlKblUWlhc2NsboApkhRZdxQNn6ji0KzzIj0Gt1PvXtVyy64RoVBeuXkZrGVpx1JGc9zmh_pmOVTVgcfYwD7B1AiT3LlQf7KlSe5cpI7gk8TCOMnRwdBRu2g1WBcGFVJ491_FV9Pp4f_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Egorov, V. ; Maksimova, O. ; Koibuchi, H. ; Bernard, C. ; Chenal, J.-M. ; Lame, O. ; Diguet, G. ; Sebald, G. ; Cavaille, J.-Y. ; Takagi, T.</creator><creatorcontrib>Egorov, V. ; Maksimova, O. ; Koibuchi, H. ; Bernard, C. ; Chenal, J.-M. ; Lame, O. ; Diguet, G. ; Sebald, G. ; Cavaille, J.-Y. ; Takagi, T.</creatorcontrib><description>•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters.
Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2021.127230</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ferroelectric polymer ; Finsler geometry ; Mechanics ; Mechanics of materials ; Physics ; Piezoelectricity ; PVDF</subject><ispartof>Physics letters. A, 2021-04, Vol.396, p.127230, Article 127230</ispartof><rights>2021 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</citedby><cites>FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</cites><orcidid>0000-0002-9441-3695 ; 0000-0003-4583-2313 ; 0000-0003-4725-3489 ; 0000-0002-1714-2684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2021.127230$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03265515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Egorov, V.</creatorcontrib><creatorcontrib>Maksimova, O.</creatorcontrib><creatorcontrib>Koibuchi, H.</creatorcontrib><creatorcontrib>Bernard, C.</creatorcontrib><creatorcontrib>Chenal, J.-M.</creatorcontrib><creatorcontrib>Lame, O.</creatorcontrib><creatorcontrib>Diguet, G.</creatorcontrib><creatorcontrib>Sebald, G.</creatorcontrib><creatorcontrib>Cavaille, J.-Y.</creatorcontrib><creatorcontrib>Takagi, T.</creatorcontrib><title>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</title><title>Physics letters. A</title><description>•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters.
Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.</description><subject>Ferroelectric polymer</subject><subject>Finsler geometry</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>PVDF</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxC8hbFim2k9gJK6qqpUhFbGBtOfa4dZXEkR0q5e9JCbBlNdLonjuag9AdJXNKKH84zLv9EGvo1ZwRRueUCZaSMzSjhUgTlrHyHM1IKvKk5IReoqsYD4SMJClnyK1q0H3wDei9ap1WNe6C7yD0DiL2FlsIwcN3yGnc-XpoIMRHvHbteDPgHYxsHwbceAO1a3dYtQYr_OrbHvBShdrj2H-a4QZdWFVHuP2Z1-hjvXpfbpLt2_PLcrFNdMZJnwhbZZaIUqmKGc5VyjPBCmZyLlKblUWlhc2NsboApkhRZdxQNn6ji0KzzIj0Gt1PvXtVyy64RoVBeuXkZrGVpx1JGc9zmh_pmOVTVgcfYwD7B1AiT3LlQf7KlSe5cpI7gk8TCOMnRwdBRu2g1WBcGFVJ491_FV9Pp4f_</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Egorov, V.</creator><creator>Maksimova, O.</creator><creator>Koibuchi, H.</creator><creator>Bernard, C.</creator><creator>Chenal, J.-M.</creator><creator>Lame, O.</creator><creator>Diguet, G.</creator><creator>Sebald, G.</creator><creator>Cavaille, J.-Y.</creator><creator>Takagi, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9441-3695</orcidid><orcidid>https://orcid.org/0000-0003-4583-2313</orcidid><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0002-1714-2684</orcidid></search><sort><creationdate>20210426</creationdate><title>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</title><author>Egorov, V. ; Maksimova, O. ; Koibuchi, H. ; Bernard, C. ; Chenal, J.-M. ; Lame, O. ; Diguet, G. ; Sebald, G. ; Cavaille, J.-Y. ; Takagi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ferroelectric polymer</topic><topic>Finsler geometry</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>PVDF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egorov, V.</creatorcontrib><creatorcontrib>Maksimova, O.</creatorcontrib><creatorcontrib>Koibuchi, H.</creatorcontrib><creatorcontrib>Bernard, C.</creatorcontrib><creatorcontrib>Chenal, J.-M.</creatorcontrib><creatorcontrib>Lame, O.</creatorcontrib><creatorcontrib>Diguet, G.</creatorcontrib><creatorcontrib>Sebald, G.</creatorcontrib><creatorcontrib>Cavaille, J.-Y.</creatorcontrib><creatorcontrib>Takagi, T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egorov, V.</au><au>Maksimova, O.</au><au>Koibuchi, H.</au><au>Bernard, C.</au><au>Chenal, J.-M.</au><au>Lame, O.</au><au>Diguet, G.</au><au>Sebald, G.</au><au>Cavaille, J.-Y.</au><au>Takagi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</atitle><jtitle>Physics letters. A</jtitle><date>2021-04-26</date><risdate>2021</risdate><volume>396</volume><spage>127230</spage><pages>127230-</pages><artnum>127230</artnum><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters.
Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2021.127230</doi><orcidid>https://orcid.org/0000-0002-9441-3695</orcidid><orcidid>https://orcid.org/0000-0003-4583-2313</orcidid><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0002-1714-2684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2021-04, Vol.396, p.127230, Article 127230 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03265515v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Ferroelectric polymer Finsler geometry Mechanics Mechanics of materials Physics Piezoelectricity PVDF |
title | Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20properties%20of%20ferroelectric%20polymers:%20Finsler%20geometry%20modeling%20and%20a%20Monte%20Carlo%20study&rft.jtitle=Physics%20letters.%20A&rft.au=Egorov,%20V.&rft.date=2021-04-26&rft.volume=396&rft.spage=127230&rft.pages=127230-&rft.artnum=127230&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2021.127230&rft_dat=%3Celsevier_hal_p%3ES0375960121000943%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0375960121000943&rfr_iscdi=true |