Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study

•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2021-04, Vol.396, p.127230, Article 127230
Hauptverfasser: Egorov, V., Maksimova, O., Koibuchi, H., Bernard, C., Chenal, J.-M., Lame, O., Diguet, G., Sebald, G., Cavaille, J.-Y., Takagi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 127230
container_title Physics letters. A
container_volume 396
creator Egorov, V.
Maksimova, O.
Koibuchi, H.
Bernard, C.
Chenal, J.-M.
Lame, O.
Diguet, G.
Sebald, G.
Cavaille, J.-Y.
Takagi, T.
description •Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters. Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.
doi_str_mv 10.1016/j.physleta.2021.127230
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03265515v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960121000943</els_id><sourcerecordid>S0375960121000943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxC8hbFim2k9gJK6qqpUhFbGBtOfa4dZXEkR0q5e9JCbBlNdLonjuag9AdJXNKKH84zLv9EGvo1ZwRRueUCZaSMzSjhUgTlrHyHM1IKvKk5IReoqsYD4SMJClnyK1q0H3wDei9ap1WNe6C7yD0DiL2FlsIwcN3yGnc-XpoIMRHvHbteDPgHYxsHwbceAO1a3dYtQYr_OrbHvBShdrj2H-a4QZdWFVHuP2Z1-hjvXpfbpLt2_PLcrFNdMZJnwhbZZaIUqmKGc5VyjPBCmZyLlKblUWlhc2NsboApkhRZdxQNn6ji0KzzIj0Gt1PvXtVyy64RoVBeuXkZrGVpx1JGc9zmh_pmOVTVgcfYwD7B1AiT3LlQf7KlSe5cpI7gk8TCOMnRwdBRu2g1WBcGFVJ491_FV9Pp4f_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Egorov, V. ; Maksimova, O. ; Koibuchi, H. ; Bernard, C. ; Chenal, J.-M. ; Lame, O. ; Diguet, G. ; Sebald, G. ; Cavaille, J.-Y. ; Takagi, T.</creator><creatorcontrib>Egorov, V. ; Maksimova, O. ; Koibuchi, H. ; Bernard, C. ; Chenal, J.-M. ; Lame, O. ; Diguet, G. ; Sebald, G. ; Cavaille, J.-Y. ; Takagi, T.</creatorcontrib><description>•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters. Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2021.127230</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ferroelectric polymer ; Finsler geometry ; Mechanics ; Mechanics of materials ; Physics ; Piezoelectricity ; PVDF</subject><ispartof>Physics letters. A, 2021-04, Vol.396, p.127230, Article 127230</ispartof><rights>2021 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</citedby><cites>FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</cites><orcidid>0000-0002-9441-3695 ; 0000-0003-4583-2313 ; 0000-0003-4725-3489 ; 0000-0002-1714-2684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2021.127230$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03265515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Egorov, V.</creatorcontrib><creatorcontrib>Maksimova, O.</creatorcontrib><creatorcontrib>Koibuchi, H.</creatorcontrib><creatorcontrib>Bernard, C.</creatorcontrib><creatorcontrib>Chenal, J.-M.</creatorcontrib><creatorcontrib>Lame, O.</creatorcontrib><creatorcontrib>Diguet, G.</creatorcontrib><creatorcontrib>Sebald, G.</creatorcontrib><creatorcontrib>Cavaille, J.-Y.</creatorcontrib><creatorcontrib>Takagi, T.</creatorcontrib><title>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</title><title>Physics letters. A</title><description>•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters. Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.</description><subject>Ferroelectric polymer</subject><subject>Finsler geometry</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>PVDF</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxC8hbFim2k9gJK6qqpUhFbGBtOfa4dZXEkR0q5e9JCbBlNdLonjuag9AdJXNKKH84zLv9EGvo1ZwRRueUCZaSMzSjhUgTlrHyHM1IKvKk5IReoqsYD4SMJClnyK1q0H3wDei9ap1WNe6C7yD0DiL2FlsIwcN3yGnc-XpoIMRHvHbteDPgHYxsHwbceAO1a3dYtQYr_OrbHvBShdrj2H-a4QZdWFVHuP2Z1-hjvXpfbpLt2_PLcrFNdMZJnwhbZZaIUqmKGc5VyjPBCmZyLlKblUWlhc2NsboApkhRZdxQNn6ji0KzzIj0Gt1PvXtVyy64RoVBeuXkZrGVpx1JGc9zmh_pmOVTVgcfYwD7B1AiT3LlQf7KlSe5cpI7gk8TCOMnRwdBRu2g1WBcGFVJ491_FV9Pp4f_</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Egorov, V.</creator><creator>Maksimova, O.</creator><creator>Koibuchi, H.</creator><creator>Bernard, C.</creator><creator>Chenal, J.-M.</creator><creator>Lame, O.</creator><creator>Diguet, G.</creator><creator>Sebald, G.</creator><creator>Cavaille, J.-Y.</creator><creator>Takagi, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9441-3695</orcidid><orcidid>https://orcid.org/0000-0003-4583-2313</orcidid><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0002-1714-2684</orcidid></search><sort><creationdate>20210426</creationdate><title>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</title><author>Egorov, V. ; Maksimova, O. ; Koibuchi, H. ; Bernard, C. ; Chenal, J.-M. ; Lame, O. ; Diguet, G. ; Sebald, G. ; Cavaille, J.-Y. ; Takagi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-7fb4f079aab2d66a3647282d5673f498bc7f5ddfc8e2a08b46d12001c88c24d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ferroelectric polymer</topic><topic>Finsler geometry</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>PVDF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egorov, V.</creatorcontrib><creatorcontrib>Maksimova, O.</creatorcontrib><creatorcontrib>Koibuchi, H.</creatorcontrib><creatorcontrib>Bernard, C.</creatorcontrib><creatorcontrib>Chenal, J.-M.</creatorcontrib><creatorcontrib>Lame, O.</creatorcontrib><creatorcontrib>Diguet, G.</creatorcontrib><creatorcontrib>Sebald, G.</creatorcontrib><creatorcontrib>Cavaille, J.-Y.</creatorcontrib><creatorcontrib>Takagi, T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egorov, V.</au><au>Maksimova, O.</au><au>Koibuchi, H.</au><au>Bernard, C.</au><au>Chenal, J.-M.</au><au>Lame, O.</au><au>Diguet, G.</au><au>Sebald, G.</au><au>Cavaille, J.-Y.</au><au>Takagi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study</atitle><jtitle>Physics letters. A</jtitle><date>2021-04-26</date><risdate>2021</risdate><volume>396</volume><spage>127230</spage><pages>127230-</pages><artnum>127230</artnum><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>•Electromechanical property of PVDF is studied by a new geometric modeling technique.•This technique is developed on the basis of Finsler geometry.•Finsler geometry is a mathematical framework for describing anisotropic phenomena.•Complex interactions of polarizations and polymers are implemented in metric function.•Reported experimental data are reproduced by MC with a single set of parameters. Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the direction of the applied electric field. However, the electromechanical response mechanism of PVDF remains unclear due to the complexity of the hierarchical structure across the length scales. In this letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and polarization are similar to those observed experimentally.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2021.127230</doi><orcidid>https://orcid.org/0000-0002-9441-3695</orcidid><orcidid>https://orcid.org/0000-0003-4583-2313</orcidid><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0002-1714-2684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2021-04, Vol.396, p.127230, Article 127230
issn 0375-9601
1873-2429
language eng
recordid cdi_hal_primary_oai_HAL_hal_03265515v1
source Elsevier ScienceDirect Journals Complete
subjects Ferroelectric polymer
Finsler geometry
Mechanics
Mechanics of materials
Physics
Piezoelectricity
PVDF
title Electromechanical properties of ferroelectric polymers: Finsler geometry modeling and a Monte Carlo study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20properties%20of%20ferroelectric%20polymers:%20Finsler%20geometry%20modeling%20and%20a%20Monte%20Carlo%20study&rft.jtitle=Physics%20letters.%20A&rft.au=Egorov,%20V.&rft.date=2021-04-26&rft.volume=396&rft.spage=127230&rft.pages=127230-&rft.artnum=127230&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2021.127230&rft_dat=%3Celsevier_hal_p%3ES0375960121000943%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0375960121000943&rfr_iscdi=true