Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis

The fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular solution model, we build a database of more than 100,000 BCC and FCC equimolar alloys fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta materialia 2021-09, Vol.202, p.114000, Article 114000
Hauptverfasser: Bokas, G.B., Chen, W., Hilhorst, A., Jacques, P.J., Gorsse, S., Hautier, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114000
container_title Scripta materialia
container_volume 202
creator Bokas, G.B.
Chen, W.
Hilhorst, A.
Jacques, P.J.
Gorsse, S.
Hautier, G.
description The fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular solution model, we build a database of more than 100,000 BCC and FCC equimolar alloys formed using 27 common elements. We statistically study how enthalpic and entropic contributions evolve with the number of elements in a random solid solution. The commonly admitted rationalization of a stabilization of HEAs due to a growing importance of the entropy with the number of elements is somewhat contradicted. Entropic and enthalpic contributions favor mixing in average, but both driving forces weaken as the number of elements in the alloy increases. By adding binary intermetallics to our analysis, we conclude that the specific chemical compositions prone to form single phase HEAs need to combine an enthalpically favorable mixing of their elements on a given lattice with the absence of strongly competing intermetallics.
doi_str_mv 10.1016/j.scriptamat.2021.114000
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03263540v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359646221002803</els_id><sourcerecordid>S1359646221002803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d8988f4bb4da9ba96fe54719feaedd912a485651c62f2cbdbf751a790536e4e83</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhisEEmPwH3Ll0JGkadoex8SXNIkLO0dukq6eumZKSqX-e1KG4MjBsmU_ry2_SUIYXTHK5MNhFbTH0wBHGFaccrZiTFBKL5IFKwueliKXl7HO8iqVQvLr5CaEQwQk42yRnHb9aLHDfk-G1s7hj85MPRxRE-NxnCeN89qGOZEW9y2x_eDdaSLQdW767sfj6Poo9-4zAjXuiYEBCNQEe4wzAj10U8Bwm1w10AV795OXye756WPzmm7fX942622qBeVDasqqLBtR18JAVUMlG5uLglWNBWtMxTiIMpc505I3XNemboqcQVHRPJNW2DJbJvfnvS106uTxCH5SDlC9rrdq7tGMyywXdGSRLc-s9i4Eb5tfAaNqdlkd1J_LanZZnV2O0sez1MZfRrQ-gmh7bQ16qwdlHP6_5Avg8I2x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Bokas, G.B. ; Chen, W. ; Hilhorst, A. ; Jacques, P.J. ; Gorsse, S. ; Hautier, G.</creator><creatorcontrib>Bokas, G.B. ; Chen, W. ; Hilhorst, A. ; Jacques, P.J. ; Gorsse, S. ; Hautier, G.</creatorcontrib><description>The fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular solution model, we build a database of more than 100,000 BCC and FCC equimolar alloys formed using 27 common elements. We statistically study how enthalpic and entropic contributions evolve with the number of elements in a random solid solution. The commonly admitted rationalization of a stabilization of HEAs due to a growing importance of the entropy with the number of elements is somewhat contradicted. Entropic and enthalpic contributions favor mixing in average, but both driving forces weaken as the number of elements in the alloy increases. By adding binary intermetallics to our analysis, we conclude that the specific chemical compositions prone to form single phase HEAs need to combine an enthalpically favorable mixing of their elements on a given lattice with the absence of strongly competing intermetallics.</description><identifier>ISSN: 1359-6462</identifier><identifier>EISSN: 1872-8456</identifier><identifier>DOI: 10.1016/j.scriptamat.2021.114000</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Scripta materialia, 2021-09, Vol.202, p.114000, Article 114000</ispartof><rights>2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d8988f4bb4da9ba96fe54719feaedd912a485651c62f2cbdbf751a790536e4e83</citedby><cites>FETCH-LOGICAL-c402t-d8988f4bb4da9ba96fe54719feaedd912a485651c62f2cbdbf751a790536e4e83</cites><orcidid>0000-0001-5379-720X ; 0000-0003-4690-6943 ; 0000-0003-1754-2220 ; 0000-0002-7496-0341 ; 0000-0003-1966-8476 ; 0000-0001-7196-8703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359646221002803$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03263540$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bokas, G.B.</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Hilhorst, A.</creatorcontrib><creatorcontrib>Jacques, P.J.</creatorcontrib><creatorcontrib>Gorsse, S.</creatorcontrib><creatorcontrib>Hautier, G.</creatorcontrib><title>Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis</title><title>Scripta materialia</title><description>The fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular solution model, we build a database of more than 100,000 BCC and FCC equimolar alloys formed using 27 common elements. We statistically study how enthalpic and entropic contributions evolve with the number of elements in a random solid solution. The commonly admitted rationalization of a stabilization of HEAs due to a growing importance of the entropy with the number of elements is somewhat contradicted. Entropic and enthalpic contributions favor mixing in average, but both driving forces weaken as the number of elements in the alloy increases. By adding binary intermetallics to our analysis, we conclude that the specific chemical compositions prone to form single phase HEAs need to combine an enthalpically favorable mixing of their elements on a given lattice with the absence of strongly competing intermetallics.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>1359-6462</issn><issn>1872-8456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhisEEmPwH3Ll0JGkadoex8SXNIkLO0dukq6eumZKSqX-e1KG4MjBsmU_ry2_SUIYXTHK5MNhFbTH0wBHGFaccrZiTFBKL5IFKwueliKXl7HO8iqVQvLr5CaEQwQk42yRnHb9aLHDfk-G1s7hj85MPRxRE-NxnCeN89qGOZEW9y2x_eDdaSLQdW767sfj6Poo9-4zAjXuiYEBCNQEe4wzAj10U8Bwm1w10AV795OXye756WPzmm7fX942622qBeVDasqqLBtR18JAVUMlG5uLglWNBWtMxTiIMpc505I3XNemboqcQVHRPJNW2DJbJvfnvS106uTxCH5SDlC9rrdq7tGMyywXdGSRLc-s9i4Eb5tfAaNqdlkd1J_LanZZnV2O0sez1MZfRrQ-gmh7bQ16qwdlHP6_5Avg8I2x</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Bokas, G.B.</creator><creator>Chen, W.</creator><creator>Hilhorst, A.</creator><creator>Jacques, P.J.</creator><creator>Gorsse, S.</creator><creator>Hautier, G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5379-720X</orcidid><orcidid>https://orcid.org/0000-0003-4690-6943</orcidid><orcidid>https://orcid.org/0000-0003-1754-2220</orcidid><orcidid>https://orcid.org/0000-0002-7496-0341</orcidid><orcidid>https://orcid.org/0000-0003-1966-8476</orcidid><orcidid>https://orcid.org/0000-0001-7196-8703</orcidid></search><sort><creationdate>202109</creationdate><title>Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis</title><author>Bokas, G.B. ; Chen, W. ; Hilhorst, A. ; Jacques, P.J. ; Gorsse, S. ; Hautier, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d8988f4bb4da9ba96fe54719feaedd912a485651c62f2cbdbf751a790536e4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bokas, G.B.</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Hilhorst, A.</creatorcontrib><creatorcontrib>Jacques, P.J.</creatorcontrib><creatorcontrib>Gorsse, S.</creatorcontrib><creatorcontrib>Hautier, G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bokas, G.B.</au><au>Chen, W.</au><au>Hilhorst, A.</au><au>Jacques, P.J.</au><au>Gorsse, S.</au><au>Hautier, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis</atitle><jtitle>Scripta materialia</jtitle><date>2021-09</date><risdate>2021</risdate><volume>202</volume><spage>114000</spage><pages>114000-</pages><artnum>114000</artnum><issn>1359-6462</issn><eissn>1872-8456</eissn><abstract>The fundamental thermodynamic driving forces beyond the existence of high entropy alloys (HEAs) are still not firmly understood. Here, using thermodynamic modeling combining ab initio computations with a regular solution model, we build a database of more than 100,000 BCC and FCC equimolar alloys formed using 27 common elements. We statistically study how enthalpic and entropic contributions evolve with the number of elements in a random solid solution. The commonly admitted rationalization of a stabilization of HEAs due to a growing importance of the entropy with the number of elements is somewhat contradicted. Entropic and enthalpic contributions favor mixing in average, but both driving forces weaken as the number of elements in the alloy increases. By adding binary intermetallics to our analysis, we conclude that the specific chemical compositions prone to form single phase HEAs need to combine an enthalpically favorable mixing of their elements on a given lattice with the absence of strongly competing intermetallics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2021.114000</doi><orcidid>https://orcid.org/0000-0001-5379-720X</orcidid><orcidid>https://orcid.org/0000-0003-4690-6943</orcidid><orcidid>https://orcid.org/0000-0003-1754-2220</orcidid><orcidid>https://orcid.org/0000-0002-7496-0341</orcidid><orcidid>https://orcid.org/0000-0003-1966-8476</orcidid><orcidid>https://orcid.org/0000-0001-7196-8703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6462
ispartof Scripta materialia, 2021-09, Vol.202, p.114000, Article 114000
issn 1359-6462
1872-8456
language eng
recordid cdi_hal_primary_oai_HAL_hal_03263540v1
source Elsevier ScienceDirect Journals
subjects Chemical Sciences
Material chemistry
title Unveiling the thermodynamic driving forces for high entropy alloys formation through big data ab initio analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20thermodynamic%20driving%20forces%20for%20high%20entropy%20alloys%20formation%20through%20big%20data%20ab%20initio%20analysis&rft.jtitle=Scripta%20materialia&rft.au=Bokas,%20G.B.&rft.date=2021-09&rft.volume=202&rft.spage=114000&rft.pages=114000-&rft.artnum=114000&rft.issn=1359-6462&rft.eissn=1872-8456&rft_id=info:doi/10.1016/j.scriptamat.2021.114000&rft_dat=%3Celsevier_hal_p%3ES1359646221002803%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359646221002803&rfr_iscdi=true