Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems
Cyber-physical energy system (CPES)-complex juxtaposition of multiple energy domains and communication and automation technologies-requires a sophisticated testing framework to achieve holistic assessment and validation, especially at large scale. In this article, the real supervision, control, and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2020-11, Vol.56 (6), p.7099-7108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7108 |
---|---|
container_issue | 6 |
container_start_page | 7099 |
container_title | IEEE transactions on industry applications |
container_volume | 56 |
creator | Nguyen, Van Hoa Nguyen, Tung Lam Tran, Quoc Tuan Besanger, Yvon Caire, Raphael |
description | Cyber-physical energy system (CPES)-complex juxtaposition of multiple energy domains and communication and automation technologies-requires a sophisticated testing framework to achieve holistic assessment and validation, especially at large scale. In this article, the real supervision, control, and data acquisition (SCADA) system of CPES is integrated with the advanced techniques-real-time simulation (RTS) and power-hardware-in-the-loop (PHIL), in a cross-infrastructure manner to create a realistic validation environment for CPES. On the one hand, the method can be applied to extend the capacity of the infrastructures as well as creating a common resource and expertise pool. On the other hand, this approach combines the realistic data and advanced SCADA services with the flexibility of the RTS platform, which provides the possibility to emulate extreme and faulty scenarios with virtual equipment and topology. The proposed approach is demonstrated via a case study of analyzing the impact of communication on advanced voltage and frequency restoration in an isolated microgrid. The case study is implemented on two remote platforms PREDIS-PRISMES (70 km apart). The validation framework comprises the RTS and PHIL platform coupled with the OPC UA SCADA system in PRISMES, the control algorithm and the communication network simulator located in PREDIS platform. |
doi_str_mv | 10.1109/TIA.2020.3021365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03260231v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9184969</ieee_id><sourcerecordid>2457972014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ffc86fd0d0056400ae53b8545b99746d492b3f6eaee1e5f0b0c9717d52cf5c83</originalsourceid><addsrcrecordid>eNo9kUFrGzEQhZfQQt2090Iugp56kDtarXat47JNYoOhAfsutNpRrOCsXElO2D_R3xwtDjkNDN-8mTevKH4wWDIG8vd-0y5LKGHJoWS8FlfFgkkuqeR186lYAEhOpZTVl-JrjE8ArBKsWhT_N2PCx6CT8yPxluy69k9LdhhenMFI9DiQB_-Kga51GF51QOpGmg5It96fyB7NYXT_zkjcSLrgY6Sb0QYdUzibdA5I1v7oYnImozHFeUM39Vnu4TBFZ_SR3I4YHieym2LC5_it-Gz1MeL393pd7O9u992abv_eb7p2S022k6i1ZlXbAQYAUVcAGgXvV6ISvZRNVQ-VLHtua9SIDIWFHoxsWDOI0lhhVvy6-HWRPeijOgX3rMOkvHZq3W7V3ANe1lBy9sIy-_PCnoLPTmNST_4cxnydKivRyKbMv8wUXCgzfyGg_ZBloOaAVA5IzQGp94DyyM1lxCHiBy7ZqpK15G9tuozM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457972014</pqid></control><display><type>article</type><title>Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen, Van Hoa ; Nguyen, Tung Lam ; Tran, Quoc Tuan ; Besanger, Yvon ; Caire, Raphael</creator><creatorcontrib>Nguyen, Van Hoa ; Nguyen, Tung Lam ; Tran, Quoc Tuan ; Besanger, Yvon ; Caire, Raphael</creatorcontrib><description>Cyber-physical energy system (CPES)-complex juxtaposition of multiple energy domains and communication and automation technologies-requires a sophisticated testing framework to achieve holistic assessment and validation, especially at large scale. In this article, the real supervision, control, and data acquisition (SCADA) system of CPES is integrated with the advanced techniques-real-time simulation (RTS) and power-hardware-in-the-loop (PHIL), in a cross-infrastructure manner to create a realistic validation environment for CPES. On the one hand, the method can be applied to extend the capacity of the infrastructures as well as creating a common resource and expertise pool. On the other hand, this approach combines the realistic data and advanced SCADA services with the flexibility of the RTS platform, which provides the possibility to emulate extreme and faulty scenarios with virtual equipment and topology. The proposed approach is demonstrated via a case study of analyzing the impact of communication on advanced voltage and frequency restoration in an isolated microgrid. The case study is implemented on two remote platforms PREDIS-PRISMES (70 km apart). The validation framework comprises the RTS and PHIL platform coupled with the OPC UA SCADA system in PRISMES, the control algorithm and the communication network simulator located in PREDIS platform.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.3021365</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; and data acquisition (SCADA)-as-a-service ; Case studies ; Communication ; control ; Control algorithms ; Control systems ; Control theory ; Cosimulation ; cross-infrastructure ; Distributed generation ; Electric power ; Engineering Sciences ; hardware-in-the-loop ; Hardware-in-the-loop simulation ; holistic testing ; Impact analysis ; Infrastructure ; Interoperability ; Object oriented modeling ; Protocols ; real-time simulation (RTS) ; Real-time systems ; SCADA systems ; supervision ; Supervisory control and data acquisition ; Syntactics ; Testing ; Topology</subject><ispartof>IEEE transactions on industry applications, 2020-11, Vol.56 (6), p.7099-7108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ffc86fd0d0056400ae53b8545b99746d492b3f6eaee1e5f0b0c9717d52cf5c83</citedby><cites>FETCH-LOGICAL-c367t-ffc86fd0d0056400ae53b8545b99746d492b3f6eaee1e5f0b0c9717d52cf5c83</cites><orcidid>0000-0003-4822-2297 ; 0000-0003-4041-3507 ; 0000-0003-3182-7820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9184969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9184969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03260231$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Van Hoa</creatorcontrib><creatorcontrib>Nguyen, Tung Lam</creatorcontrib><creatorcontrib>Tran, Quoc Tuan</creatorcontrib><creatorcontrib>Besanger, Yvon</creatorcontrib><creatorcontrib>Caire, Raphael</creatorcontrib><title>Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Cyber-physical energy system (CPES)-complex juxtaposition of multiple energy domains and communication and automation technologies-requires a sophisticated testing framework to achieve holistic assessment and validation, especially at large scale. In this article, the real supervision, control, and data acquisition (SCADA) system of CPES is integrated with the advanced techniques-real-time simulation (RTS) and power-hardware-in-the-loop (PHIL), in a cross-infrastructure manner to create a realistic validation environment for CPES. On the one hand, the method can be applied to extend the capacity of the infrastructures as well as creating a common resource and expertise pool. On the other hand, this approach combines the realistic data and advanced SCADA services with the flexibility of the RTS platform, which provides the possibility to emulate extreme and faulty scenarios with virtual equipment and topology. The proposed approach is demonstrated via a case study of analyzing the impact of communication on advanced voltage and frequency restoration in an isolated microgrid. The case study is implemented on two remote platforms PREDIS-PRISMES (70 km apart). The validation framework comprises the RTS and PHIL platform coupled with the OPC UA SCADA system in PRISMES, the control algorithm and the communication network simulator located in PREDIS platform.</description><subject>Algorithms</subject><subject>and data acquisition (SCADA)-as-a-service</subject><subject>Case studies</subject><subject>Communication</subject><subject>control</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Cosimulation</subject><subject>cross-infrastructure</subject><subject>Distributed generation</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>hardware-in-the-loop</subject><subject>Hardware-in-the-loop simulation</subject><subject>holistic testing</subject><subject>Impact analysis</subject><subject>Infrastructure</subject><subject>Interoperability</subject><subject>Object oriented modeling</subject><subject>Protocols</subject><subject>real-time simulation (RTS)</subject><subject>Real-time systems</subject><subject>SCADA systems</subject><subject>supervision</subject><subject>Supervisory control and data acquisition</subject><subject>Syntactics</subject><subject>Testing</subject><subject>Topology</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kUFrGzEQhZfQQt2090Iugp56kDtarXat47JNYoOhAfsutNpRrOCsXElO2D_R3xwtDjkNDN-8mTevKH4wWDIG8vd-0y5LKGHJoWS8FlfFgkkuqeR186lYAEhOpZTVl-JrjE8ArBKsWhT_N2PCx6CT8yPxluy69k9LdhhenMFI9DiQB_-Kga51GF51QOpGmg5It96fyB7NYXT_zkjcSLrgY6Sb0QYdUzibdA5I1v7oYnImozHFeUM39Vnu4TBFZ_SR3I4YHieym2LC5_it-Gz1MeL393pd7O9u992abv_eb7p2S022k6i1ZlXbAQYAUVcAGgXvV6ISvZRNVQ-VLHtua9SIDIWFHoxsWDOI0lhhVvy6-HWRPeijOgX3rMOkvHZq3W7V3ANe1lBy9sIy-_PCnoLPTmNST_4cxnydKivRyKbMv8wUXCgzfyGg_ZBloOaAVA5IzQGp94DyyM1lxCHiBy7ZqpK15G9tuozM</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nguyen, Van Hoa</creator><creator>Nguyen, Tung Lam</creator><creator>Tran, Quoc Tuan</creator><creator>Besanger, Yvon</creator><creator>Caire, Raphael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4822-2297</orcidid><orcidid>https://orcid.org/0000-0003-4041-3507</orcidid><orcidid>https://orcid.org/0000-0003-3182-7820</orcidid></search><sort><creationdate>20201101</creationdate><title>Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems</title><author>Nguyen, Van Hoa ; Nguyen, Tung Lam ; Tran, Quoc Tuan ; Besanger, Yvon ; Caire, Raphael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ffc86fd0d0056400ae53b8545b99746d492b3f6eaee1e5f0b0c9717d52cf5c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>and data acquisition (SCADA)-as-a-service</topic><topic>Case studies</topic><topic>Communication</topic><topic>control</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Cosimulation</topic><topic>cross-infrastructure</topic><topic>Distributed generation</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>hardware-in-the-loop</topic><topic>Hardware-in-the-loop simulation</topic><topic>holistic testing</topic><topic>Impact analysis</topic><topic>Infrastructure</topic><topic>Interoperability</topic><topic>Object oriented modeling</topic><topic>Protocols</topic><topic>real-time simulation (RTS)</topic><topic>Real-time systems</topic><topic>SCADA systems</topic><topic>supervision</topic><topic>Supervisory control and data acquisition</topic><topic>Syntactics</topic><topic>Testing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Hoa</creatorcontrib><creatorcontrib>Nguyen, Tung Lam</creatorcontrib><creatorcontrib>Tran, Quoc Tuan</creatorcontrib><creatorcontrib>Besanger, Yvon</creatorcontrib><creatorcontrib>Caire, Raphael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Van Hoa</au><au>Nguyen, Tung Lam</au><au>Tran, Quoc Tuan</au><au>Besanger, Yvon</au><au>Caire, Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>56</volume><issue>6</issue><spage>7099</spage><epage>7108</epage><pages>7099-7108</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Cyber-physical energy system (CPES)-complex juxtaposition of multiple energy domains and communication and automation technologies-requires a sophisticated testing framework to achieve holistic assessment and validation, especially at large scale. In this article, the real supervision, control, and data acquisition (SCADA) system of CPES is integrated with the advanced techniques-real-time simulation (RTS) and power-hardware-in-the-loop (PHIL), in a cross-infrastructure manner to create a realistic validation environment for CPES. On the one hand, the method can be applied to extend the capacity of the infrastructures as well as creating a common resource and expertise pool. On the other hand, this approach combines the realistic data and advanced SCADA services with the flexibility of the RTS platform, which provides the possibility to emulate extreme and faulty scenarios with virtual equipment and topology. The proposed approach is demonstrated via a case study of analyzing the impact of communication on advanced voltage and frequency restoration in an isolated microgrid. The case study is implemented on two remote platforms PREDIS-PRISMES (70 km apart). The validation framework comprises the RTS and PHIL platform coupled with the OPC UA SCADA system in PRISMES, the control algorithm and the communication network simulator located in PREDIS platform.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.3021365</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4822-2297</orcidid><orcidid>https://orcid.org/0000-0003-4041-3507</orcidid><orcidid>https://orcid.org/0000-0003-3182-7820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2020-11, Vol.56 (6), p.7099-7108 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03260231v1 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms and data acquisition (SCADA)-as-a-service Case studies Communication control Control algorithms Control systems Control theory Cosimulation cross-infrastructure Distributed generation Electric power Engineering Sciences hardware-in-the-loop Hardware-in-the-loop simulation holistic testing Impact analysis Infrastructure Interoperability Object oriented modeling Protocols real-time simulation (RTS) Real-time systems SCADA systems supervision Supervisory control and data acquisition Syntactics Testing Topology |
title | Integration of SCADA Services and Power-Hardware-in-the-Loop Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical Energy Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20SCADA%20Services%20and%20Power-Hardware-in-the-Loop%20Technique%20in%20Cross-Infrastructure%20Holistic%20Tests%20of%20Cyber-Physical%20Energy%20Systems&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Nguyen,%20Van%20Hoa&rft.date=2020-11-01&rft.volume=56&rft.issue=6&rft.spage=7099&rft.epage=7108&rft.pages=7099-7108&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.3021365&rft_dat=%3Cproquest_RIE%3E2457972014%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457972014&rft_id=info:pmid/&rft_ieee_id=9184969&rfr_iscdi=true |